Psychopharmacology: Review and Update 2018

Alan P. Agins, Ph.D.
Jody Agins, MSN, RNP, FNP/GNP-BC
Tucson, AZ

Objectives

• Compare and contrast the basic and clinical pharmacology of the major classes of antidepressants
• Discuss second generation antipsychotics with regards to approved uses and basic and clinical pharmacology
• Review treatment options for anxiety and insomnia
• Describe the pathophysiology of ADHD and the rationale for use of stimulant medications
Disclosures:

• The speakers have no financial or other conflicts of interest to disclose

Psychopharmacology Update

Depression

Depression is a state of low mood or aversion to activity that can affect a person's thoughts, behaviour, feelings and physical well-being. Depressed people may feel sad, anxious, down, hopeless, helpless, worthless, irritable, or restless.
Antidepressants

Types of Depression

- Reactive / situational depression
- Endogenous
 - Unipolar
 - Bipolar
- Psychotic
- Postpartum
- Drug-induced

Etiology of Depression???

- Genetics
 - Receptors, transporters, NT synthetic/catabolic enzymes, etc
 - Biochemical anomalies
- Stress
 - Early life emotional trauma,
 - Current life trauma
 - Conscious or subconscious
- Hormone imbalances
50 Years of Theories as to what causes Depression

- **Monoamine hypothesis (1960s-1970s)**
 - Depression due to decreased availability of monoaminergic neurotransmitters (NE, DA, 5HT)
 - Antidepressants boost monoamine levels

- **Hypothesis of neuroplasticity (2000s)**
 - Neural “plasticity” (“pruning”, atrophy) in select regions of brain can lead to depression, while antidepressant use can redirect and increase cellular resilience, and synaptic plasticity - neurotrophic hypothesis of depression.

Possible Etiology of Depression

- MRI shows volume of hippocampus decreased in patients with depression and PTSD (also Bipolar)
- Atrophy in the hippocampus most significant neuroanatomical findings in depressed patients
- Reduction in hippocampal volume directly related to the length of illness
- Atrophy of prefrontal cortex and enlargement / hyperactivity of amygdala - regions that control cognition and mood, fear and anxiety, respectively, has been reported in patients with depression and certain anxiety disorders
hippocampus

- Central component of the limbic system (emotional center of the brain)
- Responsible for forming, consolidating, storing (episodic) and retrieval of memories
- Also interacts with other regions (pre-frontal cortex, amygdala, hypothalamus, etc) to impart emotional learning and regulation, decision-making, creativity, empathy, and spatial orientation

Hippocampal Pyramidyl Neuron

- Up to 30,000 excitatory connections
 - Glutamate
- Up to 2,000 inhibitory connections
 - GABA
Possible Etiology of Depression

- Elevated glucocorticoids (cortisol) causes neuronal atrophy and retraction of dendritic processes in hippocampus – reduction in BDNF (important for synthesis of proteins necessary for synaptic growth)
- Stress also decreases proliferation of newborn granule cells in the dentate gyrus - one of two brain regions where neurogenesis continues to occur
- Patients with depression reveal hyperactivity of the HPA axis
- Hypercortisolemia observed in upwards of 55% of patients with major depression
The “chemical imbalance” and possible symptoms

- Dopamine: Anhedonia, Poor motivation
- Norepinephrine: Anergy, Psychomotor retardation
- Serotonin: Apathy, Dysthymia, Incessant Ideation

Treatment Options

- Antidepressants
 - SSRIs
 - SNRIs
 - DRIs
 - 5HT-2 Antagonists
 - TCAs
 - Mixed mechanisms
 - MAOIs
- Supplements
- ECT
- Psychotherapy
Proposed Mechanism

Serotonergic and noradrenergic projections into hippocampus (prefrontal cortex and amygdala)

- Serotonin from Raphe nuclei
- Norepinephrine from Locus coeruleus

Proposed mechanism

Serotonin 5HT1a receptors

- Presynaptic autoreceptors (decrease firing) in Raphe
- Postsynaptic heteroreceptors (increase firing) in hippocampus (HC) and other regions

Direct stimulation (ie, buspirone) or indirect stimulation (ie., SSRI-induced local ↑ in 5HT)

- Initial decrease in serotonin output from Raphe to HC
- Over time (few weeks), desensitization of autoreceptors and increased serotonin flow to HC = ↑ stimulation of “atrophied” cells & signal for granule cell growth in dentate gyrus
- May be similar mechanism for norepinephrine benefit with alpha₂ pre-post receptors in LC and HC, respectively
Selective Serotonin Reuptake Inhibitors (SSRIs)

- **1988**
 - Fluoxetine (Prozac)
- **1992-93**
 - Sertraline (Zoloft), Paroxetine (Paxil),
 - Fluvoxamine (Luvox)
- **1998**
 - Citalopram (CelexaCC)
- **2002**
 - Escitalopram (Lexapro)

Selective Serotonin Reuptake Inhibitors (SSRIs)

- Generally first line of treatment
- Efficacy essentially equal across class
- Major differences in tolerability / pharmacokinetics
- Each SSRI has slightly different pharmacological / pharmacokinetic profile
 - Different t½, durations, potencies, etc
 - Different effects on other neurotransmitters
- Possible distinct clinical activity, side effects, interactions
SSRIs

Examples of subtle differences

- **Fluoxetine**
 - least selective, affects NE & DA, activating, long t½
- **Sertraline**
 - slight affect on DA, more GI side effects
- **Paxil**
 - most potent, more somnolence, cognitive dulling, central anti-ACh activity.
- **Celexa**
 - Racemic mixture (R,S), little effects on other systems, mild nausea - transient - early
- **Lexapro**
 - Single active isomer (S) of citalopram, most 5-HT selective – early benefit

SSRIs - Side Effects

Gastrointestinal
nausea, vomiting, dyspepsia, anorexia, diarrhea

CNS
nervousness, akathisia, bruxism, insomnia, headache, tremor, somnolence, fatigue, cognitive dulling

Sexual
decreased libido, delayed orgasm, anorgasmia
SSRIs - Side Effects

Weight gain > weight loss
Increase risk of bleeding!!
 may affect platelet activity
 uterus and GI tract most likely
 caution with surgery

SIADH (hyponatremia)
 – more frequent in older pts and those receiving diuretics
 – reverses after SSRI discontinuation

Potential Drug Interactions

Pharmacokinetic

Prozac & Paxil - CYP2D6
 Some beta blockers, risperidone, tamoxifen, codeine, other opiates, dextromethorphan, atomoxetine, others

Prozac – CYP 2C9/19
 Phenytoin, warfarin

Zoloft – mild inhibitor of CYP 2D6
 generally not clinically relevant
Potential Drug Interactions

Pharmacodynamic

- Serotonin Syndrome
 - Additive with other 5-HT enhancers:
 - Other antidepressants, meperidine, methadone, tramadol, tapentadol, 1st gen antihistamines, lithium, buspirone, triptans, dextromethorphan, St John’s wort, 5-HTP, etc

- Bleeding
 - Combination with anticoagulant medications may increase risk - also NSAIDs or other GI irritants

“Atypical Antidepressants”

- DRI
 - bupropion - Wellbutrin

- SNRIs
 - venlafaxine - Effexor
 - duloxetine - Cymbalta
 - desvenlafaxine – Pristiq
 - levomilnacipran – Fetzima (more NSRI)

- $5HT_2 (\alpha_2 + H_1)$ antagonist
 - mirtazapine – Remeron

- Serotonin reuptake inhibitor Plus
 - vilazodone – Viibryd
 - vortioxetine - Trintellix
bupropion (Wellbutrin)

- DA & NE reuptake inhibition
- Also partial agonist at nicotinic ACh receptors
- Little to no effect on 5-HT
- Slow onset (no dopamine “bump”)
- Considered first line drug for treating mild-to-moderate depression
- Can be added to SSRI due to different actions
 - Non-additive side effects
 - Synergistic in effectiveness
- No effect on 5HT = no benefit in anxiety

bupropion

- Side effects, cautions, interactions
 - Insomnia, agitation, tremors, sweating
 - Weight loss
 - Seizures
 - Less nausea, diarrhea, somnolence, and sexual dysfunction than SSRIs.
 - Dopamine activity may exacerbate psychosis in schizophrenia / agitated states
 - Inhibitor of CYP2D6 – caution with adding to fluoxetine or paroxetine
SNRIs

- venlafaxine (Effexor)
- desvenlafaxine (Pristiq)
- duloxetine (Cymbalta)
- levomilnacipran (Fetzima)

A role for norepinephrine

- Specific set of symptoms respond poorly to serotonergic antidepressants:
 - loss of pleasure, loss of interest, fatigue, and loss of energy.
- Genetic manipulation of the NE system that increases NE neurotransmission protects animals from stress-induced depressive behavior
- Chemical manipulations that depletes the brain of NE increases the susceptibility of recovered depressed patients to a depressive relapse
venlafaxine (Effexor)

- Low dose (< 75 mg/day)
 - 5HT effects predominate
 - Comparable to SSRIs in efficacy and SEs
- Higher doses (titrate to 150 - 375 mg/d)
 - NE effects dominate
 - Comparable to adding 2° TCA to an SSRI
 - Hypertension (BP needs to be monitored)
 - Weight loss
 - Agitation

desvenlafaxine (Pristiq)

- Active metabolite of venlafaxine
- 70% of the benefit from venlafaxine due to it’s metabolized into desvenlafaxine
- Approved major depressive disorder
- Available in 50- & 100-mg extended-release tablets
- Unlike parent drug venlafaxine, no involvement of cytochrome P450 isoenzyme 2D6 for clearance
 - Reduction of few potential interactions
 - No genetic variability in clearance
duloxetine (Cymbalta)

- Inhibition of reuptake of both 5HT and NE is balanced throughout the dosing range
- Increases serotonin and norepinephrine
 - Similar to venlafaxine, more balanced
- Also approved for Diabetic Neuropathy
- Also approved for Fibromyalgia
- Also approved for musculoskeletal pain
- May be beneficial in stress incontinence

Adverse Effects

Most Common: Nausea, somnolence, insomnia, and dizziness

Others: Muscle spasm / jerking (legs), decreased appetite, weight loss, ED, decreased libido, anorgasmia, urinary dysfunction, fatigue, paresthesias

Had higher rate of drop-out in clinical trials
duloxetine (Cymbalta)

Pharmacokinetic
- CYP1A2 Inhibitors
 - Quinolone antibiotics

- CYP1A2 Inducers:
 - Cigarette smoke
 - Omeprazole
 - Broccoli / cauliflower

Increase risk of adverse effects from duloxetine

Increased clearance

Pharmacodynamic
- Serotonin-enhancing drugs

mirtazapine (Remeron)

- Weak antidepressant - good anxiolytic action
- Blocks histamine (H1) receptors (low doses)
- Blocks serotonin 5-HT2A, 5-HT2C and 5-HT3

Blockade may shunt 5-HT to 5-HT1A receptors

- Blocks presynaptic alpha$_2$ receptors
- Stimulates NE and 5HT release
mirtazapine

Side effects, cautions, interactions
– Weight gain, sedation at lower doses
– Little risk for sexual dysfunction
– SolTab available
– elimination half-life ranges 20—40 hours across age and gender subgroups, so dosage increases should take place no sooner than every 7—14 days.
– Additive with other 5-HT drugs – “serotonin syndrome”

vilazodone (Viibryd)

• Unique Antidepressant
• Dual Mechanism
• serotonin reuptake inhibitor
 – About similar in action and potency to SSRIs
• 5-HT1A receptor partial agonist
 – Similar to Buspirone
vilazodone

- **Place in therapy**
- **No data showing that it is better than any other antidepressant for either anxiety or depression.**
- **Caution in interpreting sexual side effect data**
 - Did not control for pre-treatment sexual dysfunction in both placebo and treatment groups
 - Need to look at it in patients who don't already have the sexual dysfunction to begin with.
 - FDA has standards for antidepressant makers to claim their products do not cause sexual dysfunction
 - According to FDA, clinical data on this for vilazodone has officially barred touting vilazodone as a low sexual side effect antidepressant.

levomilnacipran (Fetzima)

- Active enantiomer (levo) of milnacipran
- Not approved for the management of fibromyalgia
- Most noradrenergically active of the SNRI class of antidepressant drugs – almost selective for NE (NSRI vs SNRI)
- Dose response opposite of venlafaxime - greater noradrenergic selectivity at low doses and increasing effect on serotoninergic neurotransmission with upward dose escalation.
levomilnacipran

- **Common SEs**
 - Irritability, erectile dysfunction (dose-related), constipation, tachycardia, urinary hesitation (dose-related), palpitations, vomiting

- **Interactions**
 - Strong CYP3A4 inhibitors: Do not exceed 80 mg/day
 - Serotonin Syndrome with other serotonin meds

- **Caution**
 - Renal impairment – dose adjustment

- **Warnings**
 - Black Box re: antidepressants and suicide risk

levomilnacipran

Place in Therapy?

- **May** be advantageous among subsets of depressed patients, ie., those with prominent fatigue, anergia, more pronounced functional impairments (low NE), or treatment-emergent sexual dysfunction (from 5HT)

- May be useful for patients not responding to, or intolerant of, SSRIs
vortioxetine (Trintellix)

- **Inhibition of serotonin (5-HT) reuptake**
 - Also an *agonist at 5-HT*$_{1A}$ *receptors, partial agonist at 5-HT*$_{1B}$ *receptors and antagonist at 5-HT*$_3$, 5-HT$_{1D}$ *and 5-HT*$_7$ *receptors*
 - Considered first and only compound with this combination of pharmacodynamic activity.
 - Contribution of each of the above to the antidepressant effect not been established.

- **Six clinical studies conducted for FDA’s approval**
- **Shows some improvement by 2 weeks but probably not clinically relevant**

vortioxetine

- **Most common side effects:**
 - nausea, constipation, vomiting, headache
- **Some sexual dysfunction (> placebo)**
- **Little or no weight gain**
- **Long half-life (~ 66 hrs)**
- **CYP2D6 metabolism**
 - Caution with strong inhibitors (fluoxetine, paroxetine, bupropion) or strong inducers (rifampin)
 - Be aware for Poor 2D6 Metabolizers
- **Like all other serotonergic drugs**
 - additive risk for Serotonin syndrome
vortioxetine

Place in Therapy?
- Tolerability is comparable with other serotonergic antidepressants
- Efficacy no better than other current agents
- May be a useful alternative to serotonergic antidepressants for some patients who are partial responders or nonresponders
- $$$
- Caution: possible name confusion vs Brillinta (ticagrelor)

Antidepressants and Suicide

- Started in 2004 with children
- 2007 revised labeling acknowledges that “untreated depression puts people at risk for suicide.”
- Most likely in teens and young adults
- Informed consent recommended
- Follow up shortly after initiation
 - Continue follow up sporadically for 6 – 8 weeks
 - Inform family members to report unusual behaviors
- Also recognize other drugs that are not "labeled" as antidepressants also carry warning –
 - Atomoxetine
 - Milnacipran
Increased suicide risk

- **Temporal disparity**
 - increases motivation, energy, side effects (i.e., akathisia) prior to benefit on mood

- **Misdiagnosis / co-morbidities**
 - unipolar vs bipolar depression

- **Antidepressant withdrawal symptoms**
 - Discontinuation Syndrome

Discontinuation Syndrome

Flu-like:
- Fatigue
- Myalgia
- Loose stools
- Nausea
- **Lightheadedness / dizziness**
- **Uneasiness / restlessness**
- **Sleep & sensory disturbances**
- **Headache**
Discontinuation Syndrome

Most Likely:
Paroxetine / venlafaxine

Possible:
Duloxetine / citalopram / sertraline
desvenlafaxine / escitalopram

Unlikely:
Fluoxetine / mirtazapine / bupropion
Possibly vortioxetine

Factors to Consider in Choosing an Antidepressant Medication

- Safety, tolerability, cost
- Ease of administration
 - Daily number of doses
 - Titration schedule
- Patient preference
- Nature of prior response to medication
- Co-occurring psychiatric or general medical conditions
 - Anticipated side effects
 - Potential drug interactions
- Half-life (concern for discontinuation syndrome)
Taper & Discontinuation

• More an Art Than a Science
 – no controlled data demonstrating effectiveness of tapering in general or of any tapering regimen in particular

• Some clinical approaches
 • 8 weeks or more should be reduced over 2 - 4 wk
 – 25% reduction per time period
 • Reduce one-quarter every 4 to 6 wks after maintenance
 • Halve the dose and administer drug on alternate days

Discontinuation - Tapering

• \(\frac{1}{2} \) life of medication
 – Prozac rarely causes discontinuation syndrome
 – Paxil & Effexor are much more likely
 – Duration of therapy

• Previous history of discontinuation symptoms
 – Anecdotal reports suggest that Prozac can suppress discontinuation symptoms associated with other SSRIs & Effexor
Considerations for poor response to antidepressants

- Incorrect primary diagnosis
- 2° to meds (iatrogenic)
 - beta-blockers, sedatives, corticosteroids, etc
- 2° to comorbidity
 - Comorbid psychiatric disorders
 - Personality disorders, Anxiety, Substance abuse
 - Prior emotional / sexual abuse
 - Comorbid non-psych disorders
 - CVD, Chronic pain, Parkinson’s, brain neoplasms, vitamin deficiencies, hypothyroidism, alcoholism.
- Underestimating severity / chronicity of depression

Considerations for TRD?

- Patient factors
 - Compliance
 - Unusual pharmacokinetics
 - Ie., CYP2D6 UEMs
- Provider factors
 - Dose too low
 - Dose too high
 - side effects
 - Inadequate length of treatment
Pharmacological Options After Failure of First Antidepressant

Switching - Change to different antidepressant

• Same class
 – Better tolerability? – ie., paroxetine ⇒ sertraline
 – Subtle differences between SSRIs

• Different class
 – Remission rates higher for patients not responding to SSRI switched to non-SSRI vs another SSRI
 – After two negative SSRI trials- preferable to choose agent that affects different neurotransmitter

Augmentation

• Add 2nd Antidepressant
 – Rational combinations
 – eg., SSRI + NE or DA enhancers
 • Bupropion, 20 TCA (nortriptyline), buspirone
 • Use caution with SSRIs + TCAs
 • Use caution with combining CYP2D6 drugs

• Add a non-antidepressant
Antidepressant Augmentation

Adding Buspirone or Bupropion to SSRI
- Buspirone – 5HT1A agonist
- Bupropion – NE / DA reuptake inhibitor
- Buspirone augmentation (of citalopram) = bupropion in STAR*D
- Both strategies helped improve ~50% of patients, with remission rates of ~30% for both treatments.
- Mean doses/day:
 - bupropion=267mg; buspirone=41mg
 - Bupropion better tolerated
- Both may help with SSRI- sexual dysfunction

Antidepressant Augmentation

Antipsychotics
- May reduce anxiety, agitation, psychotic symptoms
- May ↑ mood
- FDA Approved as adjunct
 - Aripiprazole(2 – 5 mg/d) / Brexpiprazole(0.5 – 3 mg/d)
 » Increase DA activity
 » Also partial agonist at 5 HT1A receptors
 - Quetiapine (150-300 mg/day)
 » Active metabolite of quetiapine inhibits the activity of NE reuptake pumps
Ketamine – for TRD

- NMDA (glutamate) receptor antagonist
- Studied more than a decade ago for depression
- Improves mood within hours in treatment resistant depressed patients.
- About a 60 - 70% response rate in a matter of hours.
- Typically response lasts for 3 – 7 days, up to a couple of weeks
Ketamine mechanism ???

Esketamine

- Currently under development by Johnson & Johnson (Janssen) in a nasal spray formulation for the treatment of major depressive disorder (MDD)
- S-isomer of ketamine
- Being studied specifically for use in combination with an oral antidepressant in patients with TRD who have been unresponsive to treatment
- Received breakthrough designation from the FDA for depression twice, specifically for TRD in November 2013 and for MDD with accompanying suicidal ideation in August 2016
Esketamine

- Significant and clinically meaningful treatment effect (vs placebo) with 28-mg, 56-mg, and 84-mg doses
- Antidepressant response observed after 1 week of treatment
- Improvement in depressive symptoms can be sustained with lower frequency (weekly or every 2 weeks)
- Perceptual changes and/or dissociative symptoms, as measured by the CADSS, began shortly after the start of intranasal dosing, peaked at approximately 30 to 40 minutes, and resolved by 2
 - attenuated in all dose groups with repeated dosing

Rapastinel (GLYX 13)

- Agent with more selective action than ketamine
 - Partial agonist at glycine site on NMDA receptor
- Has relatively rapid antidepressant effect (24 – 48 hr) without significant dissociative symptoms.
- Must be administered as an infusion
- Antidepressant effect lasts up to 1 week
- Fast tracked by FDA in March 2014
- Currently in Phase 3 clinical trials
- Allergan
Older Adult Depression: Diagnosis and Treatment

CDC & Elder Depression

- ~7 million over age 65 experience yearly
- By 2020, World Health Organization prediction of developed countries
 - Depression second leading cause of disability and untimely death, only after heart disease
- Living in the community
 - Less than 1% to about 5%
- Hospitalization & Home healthcare
 - 11.5% - 30%
- Long Term Care Residents
 - 50%
Reminders….

• **Major Depressive Disorder (MDD)**
 – Severely depressed mood
 – Loss of interest in daily activities that interferes with daily life for at least two weeks

• **Persistent depressive disorder**
 – Depressed mood lasting for at least two years

• **Bipolar disorder**
 – Cycling mood changes from extreme highs to extreme lows

Major vs Minor Depression

• Older adults have lower rates of major depression than younger, but experience minor depression or significant depressive *symptoms* ≥ younger groups

• Baby Boomers are trending significantly higher rates of depressive disorders than previous groups
Depressive Symptoms Are Different

Sadness is not a major symptom

- Feeling “empty”
- Hopeless, cranky, nervous, or guilty for no reason
- Sudden lack of enjoyment in favorite pastimes
- Sleep problems
- Fatigue or Insomnia
- Loss of concentration
- Loss of memory
- Eating too much/ little
- Headaches
- Increased aches & pains
- GI / digestive issues

Elderly Depression – A Different Presentation

- **Psychosis**
 - Delusions: Paranoia
 - Hallucinations: Primarily *auditory*

- **Psychomotor disturbance**
 - Agitation
 - Slowing
Depression Risk Factors

- Genetics
 - Past depressive episodes / BPD
- Stress
 - Death of family / friends; lack of support
 - Financial issues
- Co-Morbidities
 - 80% of older adults have at least 1 chronic disease state, 50% > 2
 - Heart disease, CVA, cancer, COPD, ETOH or drug use
 - PAIN & disability; dementia

Depression By Co-Morbidity

- Post CVA: 25% to 50%
- Alzheimer’s Disease: 20% to 25%
- Cancer: 18% – 39%
- Parkinson’s disease: 10% – 37%
- Rheumatoid arthritis: 13%
- Diabetes: 5% – 11%
- Myocardial infarction: 15% – 19%
Cardiology Recommendations: Depression Screening

- American College of Cardiology & American Heart Association
 - ST-segment elevation MI
 - Screen - while hospitalized, 1 month after hospital discharge, then yearly
- Depression in hospital after MI
 - Significant predictor of 1-year cardiac mortality for both men & women
 - Significantly more likely to die of cardiac causes & have arrhythmic episodes than patients without depression

2012 CDC Stat & Elder Suicide

- Highest rates of suicide of any age group
 - Particularly among men
 - Highest: Over age 85

- 70% see PCP within a few months of suicide
 - > 1/3 within the week
Elderly Suicide Attempts

- 1 in 5 elderly suicide attempts are successful
 - Firearms
 - Hanging
 - Drowning

- Not being included - "silent" suicides
 - Overdoses, self-starvation or dehydration, "accidents"
- Double suicides involving spouses or partners occur most frequently

Assessment Tool For Suicide Risk

S Male Sex
A Age (young/elderly)
D Depression
P Previous attempts
E ETOH
R Reality testing (Impaired)
S Social support (lack of)
O Organized plan
N No spouse
S Sickness
Why Higher Risk Depression?

- **Vascular depression hypothesis**
 - Cerebrovascular disease can predispose, precipitate, or perpetuate depression
 - Hypertension, diabetes, coronary artery disease, CVA
 - Silent stroke
 - Lesions / scar tissue impairing linkage basal ganglia and prefrontal cortex
 - Stress-related atrophy in hippocampus and neighboring structures that control cognition, mood, etc

Medications Linked to Depression

- Antipsychotics
- Digoxin
- Hydralazine
- Efavirenz (others)
- Antineoplastic agents
- Anti-Parkinson’s agents
- Hormone-altering drugs
- Triptans ???
- Vitamin A analogs
 - Beta blockers
 - Stimulants ???
 - PPI & H₂ blockers
 - Corticosteroids
 - Benzodiazepines
 – Statins
 - Anticonvulsants
 - Anticholinergic drugs
Diagnostics

- Scales
 - Geriatric Depression Scale
 - Cornell Depression Scale for Dementia
- TSH, B12, etc
- Medication Review
- Ask about suicide thoughts & plans

Treatment Options
Where To Start Doses…

• Start Low

• Go Slow

BUT GO SOMEWHERE

Fractures & Daily SSRI Use

• One study reported 2-fold increase in risk of clinical fragility fracture in patients older than 50 yrs

• An increased risk of falling and lower bone mineral density at the hip was also reported in the same group
Depression: Treatment Response in Elderly

- **Time to full response longer**
 - May require up to 8 to 12 weeks
- **For a first-time depressive episode**
 - Treatment for up to 2 years may be required
- **For 3 or more episodes**
 - Lifelong maintenance treatment may be needed
 - Dosage reduction may lead to relapse; thus dosages to which patients respond should be maintained

Increased Suicide Risk With Treatment

- One study found suicide risk in men over age 66 in first month of antidepressant therapy to be 5-fold higher with SSRIs than with other antidepressants
 - No difference in risk was observed in the second month or subsequent months of treatment
Electroconvulsive Therapy

- Response rates from 70-90%
- Most efficacious antidepressant
- Contraindication: ICP, intracranial tumors
- 3x/wk with avg number of treatments 8-12
 - may need maintenance
- Side effects: Short term memory loss
- If two trials of antidepressants have failed, ECT becomes a first-line option
- Especially effective for depression exhibiting psychotic features, not responded to antipsychotics and antidepressants

Psychotherapy – A MUST

- May include
 - Cognitive-behavioral therapy
 - Supportive psychotherapy
 - Problem-solving therapy
 - Interpersonal therapy
 - Mindfulness
 - Increased exercise & exposure to bright light have also shown benefit in the depressed elderly population
In Conclusion…

- Remember to screen
- Make sure you’re treating the right thing!
 - Depression, bipolar, schizophrenia
- Start low, go slow…. BUT GO
- Don’t be afraid to push doses or add adjunct medications while watching for AE
- Follow up & encourage support

Antipsychotics
Antipsychotics

Major clinical uses

– Acute psychosis
– Schizophrenia
– Bipolar disorder
– Psychotic depression
– Adjuncts to antidepressants
– Adolescents: agitation, conduct disorder
– Elderly: dementia with agitation, delirium

Positive (Florid) Symptoms

• Aggression/agitation
• Delusions
• Hallucinations
• Paranoia

Negative Symptoms

• Alogia
• Anhedonia
• Avolition
• Flattened Affect
• Social Withdrawal

Dopamine Pathways

Nigrostriatal Pathways

Mesolimbic Pathway

Mesocortical Pathways

Tuberoinfundibular
2nd Generation Antipsychotics

- How do SGAs differ from FGAs
 - "Loose" D2 receptor binding with rapid dissociation rates
 - Preferential binding of drugs to receptors in limbic and cortical brain regions rather than striatal areas
 - 5HT2 antagonism
 - May lower overall risk of EPSs
 - Potentiates mesolimbic D2 receptor antagonist-mediated efficacy, but does not alter nigrostriatal D2 receptor antagonist-mediated motor side effects
 - Some have partial agonism at D2 and/or 5HT1a
- None of the above has been fully confirmed
FGA mechanism

- Mesocortical
- Mesolimbic
- Striatum
- Pituitary

SGA Mechanism I (proposed)

- “Looser” binding to D2 receptors
- Can be displaced by higher dopamine tone
 - Especially in striatal neurons (elevated DA tone with movement)
SGA Mechanism II (proposed)

5HT2a antagonism at pre-synaptic DA neurons increases DA release
Higher density of presynaptic 5HT2a receptors in Striatum and Mesocortical areas – not as abundant in Mesolimbic area.
Less likelihood of EPS/TD and cognitive dulling

Dopamine Pathways

Nigrostriatal Pathways

Mesolimbic Pathway

Tuberoinfundibular
clozapine (Clozaril)

- FDA-approved for patients not responding to other agents or with severe tardive dyskinesia
 - Only one approved for treatment-resistant schizophrenia
- Effective against negative symptoms
- Also effective in bipolar disorder (off-label)
- Little or no EPS, tardive dyskinesia, PRL elevation, some akathisia
- Weight gain (significant), increased salivation, increased risk of seizures, tachycardia, vertigo
- **Risk of agranulocytosis requires continual monitoring**

risperidone (Risperdal)

- Little (to none) anticholinergic side effects or sedation
- Typically dosed once daily (PO), IM q2weeks
- Doses > 6 - 8 mg/day = higher rate of EPSs / prolactin
- Weight gain
- Drug-drug interactions - cleared by CYP2D6
 - Carbamazepine may decrease risperidone levels
 - Fluoxetine, paroxetine, possibly sertraline and duloxetine, terbinafine (PO)
- Poor metabolizers (PMs) may ave increased risk of SEs
- Ultraextensive metabolizers (UEMs) may have limited benefit
paliperidone (Invega)

- Active metabolite of risperidone
 - 9-hydroxyrisperidone
- Similar mechanism as risperidone
- No bipolar indications
- Slow release (OROS) system:
 - Once daily dosing
 - Peak levels @24 hrs
 - Versus one hour for risperdone
- Slower to peak = May not be as effective in treating acute agitation
- IM (Sustenna – q/month/y; Trinza – q/3months)

olanzapine (Zyprexa)

Olanzapine = clozapine without the agranulocytosis

- May be most effective (after clozapine)
- Anticholinergic / sedation
- Weight gain, hyperglycemia and/or diabetes
- Cleared by CYP1A2
 - Inhibitors may increase side effects (fluvoxamine, ciprofloxacin)
 - Inducers may decrease efficacy
 - Cigarette (and cannabis) smoke 1° and 2°
 - Diets high in cruciferous vegetables (broccoli, sprouts, cabbage, etc) or char-cooked foods
quetiapine (Seroque!)

- Very large dosage range
 - **Agitation, depression, most unlabeled** (25 - 300mg/d)
 - **Schizo/BP** (400- 800mg/d) off-label uses (25 – 300)
- Also useful in Bipolar depression and MDD (adjunct)
 - Boxed warning re: "antidepressant" nature
- Less EPSs than others (except clozapine, iloperidone)
- Less likely to increase prolactin levels
- Sedation, anticholinergic effects, orthostatic hypotension, akathisia, dry mouth, weight gain
- QT prolongation – clinically relevant at higher doses or in combination with other factors prolonging the QT interval
- Cleared by CYP3A4 – but interactions don’t appear to be problem

ziprasidone (Geodon)

- **Schizophrenia and acute treatment of mania and mixed states associated with bipolar disorder**
- Approved dose range considered low by many
- SEs: mild sedation (transient), nausea, weakness, nasal congestion, and mild QT prolongation - less
- Weight gain less than most others (also less dyslipidemia)
- Little to none anticholinergic SEs
- Available as oral capsules and IM (for acute agitation)
- Must be taken with fat-containing meal/snack
 - Bioavailability estimated to be 50 percent lower than when drug is taken with the recommended ≥500 calorie meal.
ziprasidone (Geodon)

- Dose of at least 120 mg/day is believed necessary to achieve sufficient D2 blockade for therapeutic efficacy
- Drug-drug interactions:
 - No significant P450 interactions, however, blood levels may be altered with inhibitors and inducers of the cytochrome P450 system (3A4 and 1A2)
 - Concomitant use with other medications that prolong the QT interval is contraindicated!
 - Fluoroquinolones, tricyclic antidepressants, hydroxychloroquine (macrolides?), others

aripiprazole (Abilify)

- Sometimes referred to as 'dopamine system stabilizer'
- Complex pharmacology - partial agonist D2 receptors, partial agonist at serotonin 5HT1a receptors, antagonist at 5HT2a, H1, and alpha-1-adrenergic receptors
- Approved as adjunct to antidepressants for depression
- Can be either activating or sedating
- Weight "neutral" – also less risk of EPS symptoms, dyslipidemia and prolactin levels
- SEs - headache, nausea, vomiting, insomnia, tremor, constipation, and dose related akathisia
 - Rates of akathisia substantially higher for patients receiving aripiprazole for major depressive disorder and bipolar disorder
aripiprazole (Abilify)

- Available PO (standard and orally disintegrating tablets, oral solution), IM as sterile solution and ER suspension.
- Cleared by both CYP2D6 and 3A4 – published dosage adjustments for concurrent inducer or inhibitor therapy
- Also dosage adjustment recommendations available for CYP2D6 genetic status (PMs vs UEMs)
- Due to antidepressant action, Boxed Warning re: suicidality ideation

iloperidone (Fanapt)

- Treatment of adults with schizophrenia
- SEs: dizziness, orthostatic hypotension, tachycardia, weight gain, dry mouth, sedation
 - Titrate dose slowly (over 4 days) to avoid orthostatic hypotensive effects
- Associated with only modest elevations of prolactin and a low incidence of extrapyramidal symptoms
- Cleared by CYP 2D6 and CYP3A4.
 - strong CYP2D6 inhibitors (eg, paroxetine, fluoxetine, quinidine) or strong CYP3A4 inhibitors (ketoconazole, clarithromycin): Decrease iloperidone dose by 50%
asenapine (Saphris)

- Approved for the treatment of **schizophrenia, acute mania and mixed episodes in bipolar I disorder**
- Combination of antagonist activity at D2 and 5-HT2A receptors.
- Available in 5 or 10 mg **sublingual** tablets.
- SEs: sedation, weight gain, dizziness, EPS (especially akathisia). Weight gain intermediate among the SGAs
 - Rare reports of serious hypersensitivity reactions, including anaphylaxis,
- CYP1A2 substrate – same issues as with olanzepine
 - Smokers will clear drug ~ 2x as non-smokers
- Renal impairment has no impact on drug levels or clearance

lurasidone (Latuda)

- Approved for the treatment of schizophrenia & bipolar depression (monotherapy or as adjunct to lithium or divalproex)
- Blocks D2 & 5-HT2A receptors; potent antagonism at 5-HT7 receptors (?). Moderate block at 5-HT1A and alpha2 adrenergic receptors. Little to none at alpha1 adrenergic, histamine or cholinergic receptors.
- Long half-life (18 hrs)
 - Once daily dosing with no titration
- Bioavailability increases two to three-fold when taken with a 350 calorie meal
 - But not dependent on fat content of the meal
lurasidone (Latuda)

- Dose reduction is needed in the setting of moderate or severe renal or hepatic insufficiency
- Common side effects include somnolence, akathisia, nausea, and parkinsonism
- Mild weight gain, elevations of serum glucose.
- Increase in prolactin, QTc prolongation (not clinically relevant)
- Metabolized by CYP3A4
 - Strong Inhibitors – use contraindicated
 - Moderate inhibitors – reduce dose
 - Strong inducers – use contraindicated
 - Moderate inducers – dosage adjustment (up) allowed

brexpiprazole (Rexulti)

- **Approved for schizophrenia / adjunct for MDD**
- Compared to aripiprazole:
 - More similar to other SGAs than aripiprazole
 - Theoretically more effective antipsychotic but larger risk of EPS and prolactin elevation, due to ~50% greater intrinsic activity at D2 receptors
 - High affinity for serotonin 5HT1A receptors (partial agonist) and 5HT2A receptors (antagonist) – benefit?
 - Much less clinical experience – no head-to-head comparisons
 - Not currently approved for bipolar
 - Brand only – higher price!
cariprazine (Vraylar)

Treatment of schizophrenia
Bipolar - acute treatment of manic or mixed episodes

- Partial agonist at:
 - D2 receptors
 - D3 receptors
 - 5-HT1A receptors

- Antagonist at:
 - 5-HT2B receptors
 - 5-HT2A receptors

- Antagonist at (moderate to low affinity):
 - H1 receptors
 - 5-HT2C receptors

It has been suggested that 5-HT1A, 5-HT2B and D3 receptor effects could improve negative symptoms via activation of DA neurotransmission in frontocortical regions - To date, no conclusive data from RCTs support this!

Weight Gain from SGAs

- Typically emerges early (increased consumption)
 - Probably related to blockade of 5HT2c and/or H1 receptors (both increase appetite)
- Associated with adherence issues
- Reversible, but weight “on” generally faster than weight“off”
- May lead to hyperlipidemia, insulin resistance, glucose intolerance, diabetes, metabolic syndrome
- Clozapine = Olanzapine > Riperidone = Quetiapine
 >> Aripiprazole = Ziprasidone
Weight Gain from SGAs

<table>
<thead>
<tr>
<th>Generic (Trade Name)</th>
<th>Weight Gain</th>
<th>Dyslipidemia</th>
<th>T2DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olanzapine (Zyprexa)</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Clozapine (Clozaril)</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Risperidone (Risperdal)</td>
<td>Moderate</td>
<td>Low to moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Ziprasidone (Geodon)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Quetiapine (Seroquel)</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low to moderate</td>
</tr>
<tr>
<td>Aripiprazole (Abilify)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Paliperidone (Invega)a</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Asenapine (Saphris)b</td>
<td>Low to moderate</td>
<td>Low</td>
<td>Unknown</td>
</tr>
<tr>
<td>Iloperidone (Fanapt)c</td>
<td>Low to moderate</td>
<td>Low</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

* Due to the limited trial data for these agents, their metabolic-effect profiles are based on the package insert. SGAs: second-generation antipsychotic; T2DM: type 2 diabetes mellitus.

Source: References 1, 6.

Incidence of > 7% Increase in Body Weight in Short term Trials

![Incidence Graph](image)
Shift in Risk Perception of Antipsychotics

Past Areas of Concern

Effectiveness of Antipsychotic Drugs in Patients with Chronic Schizophrenia: Efficacy and Safety Outcomes of the CATIE Trial

Shift in Risk Perception of Antipsychotics

Antipsychotics – Clinical considerations

Considerations in Medication Selection:

- Patient preference
- Prior treatment response (or 1° relative)
- Side effect profile
- Medical history and risk factors
- Concomitant medications
- Adherence history
- Remember – antipsychotics effective for “positive” symptoms but not so much (if at all) for “negative” symptoms
Antipsychotics – Clinical considerations

Antipsychotic choices should be made by the patient and provider together – risk:benefit discussions

Risks:
- Metabolic (including weight gain, T2DM)
- EPSs (including akathisia, dyskinesia, dystonia)
- CV (including QTc prolongation)
- Endocrine (hyperprolactinemia, etc)
- Misc (general unpleasant subjective experiences)
- Drug Interactions (CYP450, QTc prolongation, etc)
- Dementia - Boxed Warning re: Increased mortality in elderly patients with dementia-related psychosis

SGAs approved for Bipolar

<table>
<thead>
<tr>
<th>Acute Mania</th>
<th>Maintenance</th>
<th>Acute Depression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olanzepine</td>
<td>Olanzepine</td>
<td>Olanzepine + fluoxetine</td>
</tr>
<tr>
<td>Risperidone</td>
<td>Risperidone</td>
<td>Quetiapine</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>Quetiapine</td>
<td></td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>Ziprasidone</td>
<td></td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>Aripiprazole</td>
<td></td>
</tr>
<tr>
<td>Asenapine</td>
<td>Asenapine</td>
<td></td>
</tr>
<tr>
<td>Cariprazine</td>
<td></td>
<td>Lurasidone</td>
</tr>
</tbody>
</table>

Genomic data recently showed bipolar disorder overlaps the most in cortical gene activity with schizophrenia

Science Feb. 8, 2018
Why so many SGAs???

- Major actions of SGAs are attributed to D_2 and $5HT_{2a}$ antagonism
- Different agents also affect numerous other receptors to varying degrees (agonists, partial agonists, antagonists)
 - including D_1, D_3, D_4, $5HT_{1a}$, $5HT_{1d}$, $5HT_{2c}$, $\alpha_{1A/B}$ (adrenergic) H_1 (histamine) and M_1 (cholinergic)
- Depending on the drug and the genetic genotype/phenotype of the patient – efficacy and tolerability can vary widely

Discontinuation of therapy:

- American Psychiatric Association (APA) guidelines recommend gradually tapering antipsychotics to avoid withdrawal symptoms and minimize the risk of relapse
- Risk for withdrawal symptoms may be highest with highly anti-cholinergic or dopaminergic antipsychotics
- When stopping antipsychotic therapy in patients with schizophrenia, the APA guidelines recommend reducing the dose by 10% each month
Pharmacologic Treatment Reminders In the Older Adult

CMS: Antipsychotic Initiative

Initiative to Improve Behavioral Health and Reduce the Use of Antipsychotic Medications in Nursing Homes Residents
CMS: Antipsychotic Initiative

- Only diagnoses “carved out” to use antipsychotics
 - Schizophrenia
 - Huntington’s Chorea
 - Tourette syndrome

CMS: New Goals Set for 2018

- Some States already set their own State specific goals
- National:
 - 15% reduction of antipsychotic medication use by the end of 2019 for long-stay residents in those homes with currently limited reduction rates.
- Surveyor Guidance & F tags
 - Separate Dementia Care Practices F309 (includes QI for pain, hospice, etc.) & separate out antipsychotic use from other unnecessary drug use currently addressed in F329
Second Generation Antipsychotics

- Better response & tolerability
 - Less EPS / TD
- All metabolized in liver
 - P450 precautions
 - Decrease dose with liver dysfunction
- Black Box: entire class RT use in dementia behaviors
 - Increased risk of death
 - CVA
 - Pneumonia
 - Hyperglycemia

Assessment: SGA Benefits & Risks

<table>
<thead>
<tr>
<th>Adverse effect</th>
<th>Overall strength of research evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>High for SGAs vs. placebo and FGAs vs. SGAs</td>
</tr>
<tr>
<td></td>
<td>Moderate for haloperidol vs. risperidone</td>
</tr>
<tr>
<td>Sedation/fatigue</td>
<td>Moderate</td>
</tr>
<tr>
<td>EPS</td>
<td>Moderate</td>
</tr>
<tr>
<td>Weight gain</td>
<td>Moderate</td>
</tr>
<tr>
<td>Stroke</td>
<td>Low</td>
</tr>
<tr>
<td>Cardio & pulmonary</td>
<td>Low</td>
</tr>
<tr>
<td>Cognitive changes</td>
<td>Low</td>
</tr>
<tr>
<td>Falls/hip fracture</td>
<td>Low</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Low</td>
</tr>
<tr>
<td>Urinary symptoms</td>
<td>Low</td>
</tr>
</tbody>
</table>

SGAs: Number Needed to Harm

<table>
<thead>
<tr>
<th>NNH</th>
<th>Gait</th>
<th>EPS</th>
<th>Fatigue</th>
<th>Sedation</th>
<th>Cardio-vascular</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aripiprazole</td>
<td>--</td>
<td>--</td>
<td>22</td>
<td>16</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>21</td>
<td>10</td>
<td>34</td>
<td>9</td>
<td>48</td>
<td>--</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>--</td>
<td>--</td>
<td>34</td>
<td>8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Risperidone</td>
<td>33</td>
<td>20</td>
<td>34</td>
<td>10</td>
<td>34</td>
<td>53</td>
</tr>
</tbody>
</table>

Number needed to harm (NNH) not calculated for many cells due to non-significant effects or insufficient sample sizes or clinical trial data.

Factors that May Influence SGA Prescribing in Dementia

- Aripiprazole
 - Long half-life, potential of drug-drug interactions, partial agonist mechanism of action, + akathisia

- Olanzapine
 - More anticholinergic effects, sedation, metabolic effects, weight gain

- Risperidone
 - Higher risk: extrapyramidal symptoms & hyperprolactinemia

- Ziprasidone
 - Changes in absorption with food & higher risk of QTc prolongation
Overview: Antipsychotic Use In Dementia Related Behaviors

Non-pharmacological approaches → inadequate response
Review of options → Decision to try an antipsychotic

Begin at low dose and titrate slowly

Taper, discontinue, and discuss other options

No response after 4 weeks

Significant side effect

Review risk/benefits

Good clinical response

Assess at 4 months; taper attempt recommended

Behaviors for which drugs WILL NOT HELP

wandering, pacing
hoarding or rummaging
apathy
Pharmacologic Approaches

- Remember treat underlying source first
- Make sure you’re treating the right thing!
 - Depression, dementia, bipolar, schizophrenia
- Start low, go slow…. BUT GO
- Don’t be afraid to push doses or add adjunct medications
- Meds control agitation, restlessness, hostility
 - Not impaired memory or indifference
Primary Anxiety Disorder Types

Generalized Anxiety Disorder
Panic Disorder
Obsessive Compulsive Disorder
Post-Traumatic Stress Disorder
Social Phobia

Anxiety

- Placebo response rate with GAD is about 40%
- Because of long term nature of disorder, treatment plan must be carefully thought out
- Drug treatment of GAD is sometimes seen as a 6 to 12 months treatment, some evidence indicates that treatment should be long term, perhaps life long
- About 25% of patients relapse in the first month after the discontinuation of therapy and 60 to 80% relapse over the course of next year
Pathophysiology
Different types may have different etiologies

- Autonomic imbalance / hyperarousal state locus ceruleus
- Dorsal & medial raphe nuclei (Serotonin imbalance)
- Chronic hyperventilation & CO\textsubscript{2} receptor hypersensitivity
- Hypersensitive to stress
- Decreased hippocampal GABAergic function

Anxiety

- Inability to effectively and efficiently ignore irrelevant information
- Inability to inhibit “unwanted negative” thoughts
- Inability to discriminate contextual aspects of “dangerous situations”
 – out-of-proportion to the actual danger or situation
Some of the Players

- **Hippocampus** – pivotal role in formation of new memories and storage/retrieval of old memories – “new memories building on past memories”
- **Amygdala** – formation and storage of memories associated with emotional events, emotional intelligence, fear, strong connection of memory and emotion
- **Prefrontal frontal cortex (PFC)** - Executive functions such as planning, decision making, predicting consequences for potential behaviors, and understanding and moderating social behavior
 - orbitofrontal cortex (OFC) codes information, controls impulses, and regulates mood.
 - ventromedial PFC is involved in reward processing and in the visceral response to emotions, self-awareness or self-reflection

Benzodiazepines-Anxiolytics

- chlordiazepoxide (Librium®)
- diazepam (Valium®)
- clonazepam (Klonopin®)
- clorazepate (Tranxene®)
- lorazepam (Ativan®)
- oxazepam (Serax®)
- alprazolam (Xanax®)
Benzodiazepines

Advantages
- Effective, mainly in somatic symptoms
- Fast onset of action
- Reproducible response

Disadvantages
- Less effective for psychic symptoms
- Dependence issues with long-term use
- Withdrawal symptoms and rebound anxiety
- Cognitive and psychomotor impairment
- Drug-drug interactions (CYP 3A4)

Benzodiazepines

Mechanism of Action
- Bind to the benzodiazepine site on GABA_A receptors
- GABA is the major inhibitory neurotransmitter in the CNS
- Benzodiazepines relieve anxiety through enhancement of the inhibitory activity of GABA
- Most appropriate for use during the first 2 - 3 weeks of antidepressant use- then discontinued as the antidepressant begins working.
- Controlled Substance (C-IV)
Specific Sites and Actions

Amygdala, orbitofrontal cortex & insula
- Alleviation of anxiety, agitation and fear
 - Spinal cord, cerebellum & brain stem
 - Muscle relaxation (also anxiolytic)
 - Cerebellum and hippocampus
 - Antiepileptic action

Cerebral cortex and hippocampus
- Mental confusion and amnesia

Ventral tegmentum and nucleus accumbens
- Rewarding behavioral effects - - (dependence/abuse)

Benzodiazepines

Mechanism: potentiation of neural inhibition that is mediated by gamma-aminobutyric acid (GABA)
Benzodiazepines
Pharmacokinetic Differences

<table>
<thead>
<tr>
<th>Benzodiazepine</th>
<th>Onset (hrs)</th>
<th>Elimination half-life (hrs)</th>
<th>Active metabolite</th>
<th>Approx. Dosage (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alprazolam</td>
<td>0.5 - 2</td>
<td>9 - 20</td>
<td>No</td>
<td>0.5 (tid)</td>
</tr>
<tr>
<td>Diazepam</td>
<td>1 – 1.5</td>
<td>20 - 100</td>
<td>Yes [36 – 200 hrs]</td>
<td>2–10 (bid-qid)</td>
</tr>
<tr>
<td>Chlordiazepoxide</td>
<td>1.5 - 4</td>
<td>5 - 30</td>
<td>Yes [36 – 200 hrs]</td>
<td>5 – 10 (tid – qid)</td>
</tr>
<tr>
<td>Clonazepam**</td>
<td>1 - 4</td>
<td>6 - 18</td>
<td>No</td>
<td>0.25 -0.5 (bid)</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>1 – 1.5</td>
<td>10 - 20</td>
<td>No</td>
<td>1 – 3 (bid – tid)</td>
</tr>
<tr>
<td>Oxazepam</td>
<td>3 - 4</td>
<td>4 – 15</td>
<td>No</td>
<td>10 – 20 (tid – qid)</td>
</tr>
</tbody>
</table>

Benzodiazepines
Adverse Reactions

- CNS depression: drowsiness, sedation, psychomotor impairment, ataxia
- Disorientation, confusion, irritability
- Impairment in memory and recall
- Paradoxical disinhibition
 - increased excitement, irritability, aggression, hostility or impulsivity
 - may be incorrectly assessed as agitation with an increase in the benzodiazepine dose leading to further disinhibition
Buspirone

- Partial agonism or mixed agonism/antagonism at 5-HT type 1A receptors -
 - High concentration in dorsal raphe and hippocampus
 - Inhibits the firing rate of 5-HT-containing neurons in the dorsal raphe
 - Increases firing in the locus ceruleus
 - May explain why benzos cause drowsiness while buspirone does not.
- Also binds to dopamine (DA2) receptors
 - Acts as agonist and an antagonist

SSRIs, Effexor in Anxiety

All studied in various types of anxiety
GAD, SAD, PD, PTSD, OCD
SSRIs are first-line therapy for many anxiety disorders due to:

- Broad spectrum activity in mood / anxiety disorders
- Relatively favorable side effect profile
- Better tolerated than older classes of antidepressants
- Generally higher doses require
- Slow titration = long time to benefit
Pharmacological Management of Insomnia

- **Schedule IV drugs**
 - Benzodiazepines
 - Non-benzo’s
 - The “Z” hypnotics (ie., Ambien, Sonata, Lunesta)

- **Non-Scheduled**
 - Antihistamines
 - Antidepressants
 - Melatonin Agonists
 - Melatonin
 - Dietary Supplements

Benzodiazepines

Not all Benzos are useful as hypnotic agents!

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>Ave Dose</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flurazepam</td>
<td>Dalmane</td>
<td>15-45</td>
</tr>
<tr>
<td>Quazepam</td>
<td>Doral</td>
<td>7.5-15</td>
</tr>
<tr>
<td>Intermediate-acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estazolam</td>
<td>Prosom</td>
<td>0.5-2</td>
</tr>
<tr>
<td>Temazepam</td>
<td>Restoril</td>
<td>15-45</td>
</tr>
<tr>
<td>Short-acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triazolam</td>
<td>Halcion</td>
<td>0.125-0.25</td>
</tr>
</tbody>
</table>
Benzodiazepines - All Scheduled C-IV

- Subjective and objective improvements in sleep maintenance measures is greater for longer-acting agents (flurazepam, quazepam, estazolam) vs. triazolam
- Next-day sedation as well as cognitive and psychomotor function impairment worse with longer acting agents.
- Benzodiazepines increase total sleep time, but may prevent transition from lighter stage 2 sleep into deep, restorative (stage 3 and 4) sleep

“Z” hypnotics - All Scheduled C-IV

Zaleplon (Sonata)
Zolpidem (Ambien / Ambien CR)
Eszopiclone (Lunesta)

- Chemically unrelated to the benzodiazepines
- More selective for specific subunit (alpha-1) of benzodiazepine receptor
- Tend to mainly produce sedation with little or no anxiolytic, muscle relaxant or anticonvulsant effect.
- Lower risk of tolerance and dependence compared with benzodiazepine
“Z” hypnotics

- Potential for amnestic and ataxic effects
- Absorption of all “Z” hypnotics can be affected by food esp fatty meals
- Less evidence of subjective and objective next-day residual effects associated with zolpidem vs. benzos
- Less evidence of subjective next-day impairment with zaleplon, even if given in the middle of the night
- Less drug-drug interactions

Belsomra suvorexant

- First approved drug of in class - orexin receptor antagonist
- Available in 5, 10, 15, and 20 milligrams
- Dosed once per night within 30 minutes of bedtime
- Three clinical trials showed decreased sleep latency and increased sleep maintenance (compared to placebo)
- Most common SE – next-day drowsiness / diving issues
- Cleared by CYP3A4 – not recommended with
 - Strong 3A4 inhibitors / liver impairment
- Schedule IV
- Same boxed-warning as all other sleeping pills re: complex behaviors including sleep-walking, driving, talking, eating,
Alternatives To Benzos & Schedule IV Hypnotics

- **Antihistamines** (Diphenhydramine, Hydroxyzine,
- **Antidepressants**
 - Trazodone (Desyrel®)
 - TCA’s (Amitriptyline, Doxepin, etc…)
 - Mirtazapine (Remeron®)
- **Melatonin**
- **Rozerem** (melatonin receptor agonist)
- **Herbals**

FDA and Sleeping Pills

- All “sleeping pills” now have a warning with regards to:
 - the possibility of strange sleep-related behaviors (sleep walking, sleep driving, talking on the phone, eating, etc)
ADHD: History

- Early 1900’s - Defect in “moral control”
- 1930’s MBD (minimal brain dysfunction)
- 1950’s Hyperkinetic syndrome / Hyperkinesis
- 1960’s Hyperactivity
- **1982** Attention Deficit Hyperactivity Disorder
ADHD

- Deficient self-regulation of behavior, mood, response
- Impaired ability to organize/plan behavior over time
- Inability to direct behavior toward future
- Failure to delay gratification (“delay aversion”)
 - preference for small immediate rewards over larger delayed rewards ($SS > LL$)
- Emotional dysregulation
- Diminished social effectiveness & adaptability
- All due to diminished “executive function”

ADHD- subtypes

- **ADHD, inattentive type**
 - predominantly a cognitive/information processing disorder

- **ADHD, hyperactive-impulsive type**
 - primarily a disorder of behavioural inhibition, associated with increased risk of ODD/CD

- **ADHD, combined type**
ADHD in Adults

- Hyperactivity and impulsivity diminish over time
 - “Inner restlessness” - decrease in marked outward visible hyperactivity presumably been reason it was thought ADHD gets “outgrown”
- **Diminished executive functions persist**
 - Accommodations and strategies develop
 - 80% maintain some symptoms into adulthood
 - 55-65% maintain clinically significant symptoms
 - High degree of comorbid psych disorders

Females and ADHD

Girls and ADHD
- Girls more likely than boys to suffer **inattentive** ADHD
- Symptoms tend to be less disruptive and obvious than those of hyperactive ADHD = less likely to be recommended for an evaluation
- Girl may demonstrate hyperactivity by incessant talking

Women and ADHD
- More prone to eating disorders, obesity, low self-esteem, depression, and anxiety
- Impulsive, more disorganized, scattered, forgetful, and introverted
- Often look for own diagnosis after learning about disorder when their children are diagnosed
Comorbidities with ADHD

30 – 35% have one or more of the following:

- Oppositional Defiant Disorder
- Conduct Disorder
- Antisocial personality disorder
- Borderline personality disorder
- Mood disorders - Bipolar disorder
- Anxiety disorders – GAD, OCD
- Depression
- Tic Disorders / Tourettes

Causes of ADHD

- Genetics
 - Disorder is highly heritable and that genetics are a factor in about 75 – 85% of all cases
 - No single gene has been implicated as cause
 - Genetric polymorphisms have been observed in:
 - Dopamine, norepinephrine, serotonin transporter genes
 - Dopamine, serotonin, acetylcholine receptor genes
 - DA, NE catabolic enzymes (MAO, COMT)
 - As many as 32 different polymorphisms
 - Disorder should be viewed as complex interaction - genetic + other factors
Causes of ADHD

- **Environment**
 - Prenatal
 - Exposure to alcohol, tobacco, drugs (Rx or illicit)
 - Maternal stress
 - Fetal or delivery-related anoxia
 - Pre/neonatal infections (ie., PANDAS)
 - Postnatal
 - Parental marital discord / family dysfunction leading to neglect and abuse of children
 - Early family environment: emotional stress and conflict between the parents – self-blame by child
 - Small genetic anomalies can be exacerbated disproportionately

- **Diet, environmental contaminants**
 - Dietary deficiencies
 - Food preservatives, artificial food coloring, contaminants - Renewed FDA scrutiny
 - Also – concern re: pyrethroid pesticides (boys)

- **Social / Educational**
 - The “snippet” society at home and in school
 - Psychosocial development
 - Poor Relationships with caregivers
 - Not cause – but exacerbates condition
 - May also exacerbate comrobid conditions
Prefrontal Cortex

Executive Function
- Working Memory
- Selective attention
- Organization
- Hierarchal Thinking

Prefrontal Cortex
- Reinforcement
- Response Consistency
- Inhibition of impulses

Brain Stem
- Sensory input
- Brain arousal

Pathophysiology

MRI studies in ADHD have found:
Decreases in total cerebral volume, smaller anterior regions in the corpus callosum, left-side prefrontal cortex, particularly the posterior-inferior lobules.

Smaller size

Reduced Perfusion

PET scans show reduced perfusion to the bilateral frontal areas, the caudate nuclei, and the basal ganglia.
Neurotransmitters

- **Norepinephrine (NE)**
 - Critical to reasoning, learning, problem solving, priority setting, organizational thought
 - Maintains mental alertness, regulates excitability related to danger, contributes to memory storage and retrieval

- **Dopamine (DA)**
 - Involved in motor control, interacts with NE in the frontal lobe to maintain attention, also important for motivation and reward

- **Serotonin (5HT)**
 - Comfort, empathy, mood stability, impulse control, other

Pathophysiology

Some studies suggest a defect in the dopamine receptor **D4 (DRD4)** receptor

DRD4 receptor uses DA and NE to modulate attention to and responses to an environment

Some studies report an **overexpression** of dopamine transporter-1 (**DAT1**)

Other studies suggest a decrease in available DA transporters – secondary to decreased production or release of DA
Pathophysiology

Normal Transmission

Dopamine Transporter DAT-1

Presynaptic Neuron

Postsynaptic Neuron

Dopamine Receptors

Signal !

Pathophysiology

Overexpression of Dopamine Transporter DAT-1

ADHD

Presynaptic Neuron

Postsynaptic Neuron

Dopamine Receptors

Noise
Pathophysiology

Smaller Size + Less perfusion + Decreased NE / DA

Lack of connectivity of key brain regions that modulate attention, stimulus processing, and impulsivity
Also
Reward and Motivation

Stimulant Medications

Methylphenidate (MPH)
Amphetamine

Produce slightly different cellular and molecular effects - final outcome for each drug class is to increase monoamine activity

Target Neurotransmitters
• NE – inattention, lack of focus, distractibility
• DA – impulse and behavior (also motivation)
History of Stimulant Formulations

1937 - IR d,l-amphetamine
1940 - IR d-amphetamine
1950 - IR methylphenidate
1970 - IR pemoline
1980 - SR methylphenidate
2000 - Concerta
2001 - Metadate CD, Focalin Adderall XR,
2002 - Ritalin LA
2006 - Daytrana (patch)
2007 – Vyvanse

2016

Methylphenidate
- Aptensio XR
 - 1st 12-hour sprinkle cap
- QuilliChew ER
 - 1st 8-hour chewable tab

Amphetamine
Adzenys XR-ODT
- new once-daily ER forms - orally disintegrating tab
Dyanavel XR
- first suspension

Mechanism of Action
Amphetamine Derivatives

Amphetamine

<table>
<thead>
<tr>
<th>NE</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>HO</td>
</tr>
<tr>
<td>OH</td>
<td>OH</td>
</tr>
<tr>
<td>NH₂</td>
<td>NH₂</td>
</tr>
<tr>
<td>CH₂</td>
<td>CH₂</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
</tr>
<tr>
<td>C₆H₄</td>
<td>C₆H₄</td>
</tr>
<tr>
<td>NH₂</td>
<td>NH₂</td>
</tr>
<tr>
<td>HO</td>
<td>HO</td>
</tr>
<tr>
<td>OH</td>
<td>OH</td>
</tr>
<tr>
<td>NE</td>
<td>DA</td>
</tr>
</tbody>
</table>
Mechanism of Action
Methylphenidate Derivatives

Methylphenidate

Affects DA > NE

Mechanism of Action
Methylphenidate Derivatives

Overexpression of Dopamine Transporter

Presynaptic Neuron

ADHD

Dopamine Receptors

Postsynaptic Neuron
Clinical Pros and Cons of “Stimulants”

Considered 1st Line Treatments for ADHD (without comorbidities)

Advantages:
- Safest of the medications (when used as directed)
- Lowest “adverse” effects
 - Approximately 70% of children will respond to the first stimulant prescribed
 - Up to 90% respond to the first or second stimulant attempted
- Wide therapeutic window in dosing schedules
- Many different options for formulations

Disadvantages:
- All Schedule II drugs
- Abuse potential
- Diversion - Selling or giving to others
Stimulant Side Effects

- Anxiety, Insomnia
 - dose/formulation related
- Anorexia, weight loss
 - amphetamine/sustained release worse
- Sympathomimetic effects
 - headaches, elevated BP / HR
- Rebound (end of dose phenomenon)
 Irritability, hyperactivity, impulsivity > untreated symptoms
 Dinner / Homework time 5-9 p.m.
 Increases family stress
 May require short acting stimulant after school hours

Interactions

Primarily Pharmacodynamic –
Additive effects with other stimulant-like medications:
- Insomnia
- Arrhythmias, tachycardia
- Irritability
- Nervousness
- Seizures
B-agonists, OTC decongestants, dietary supplements or lifestyle interactions possible
Stimulant Formulations

Short-Acting – Immediate Release Formulations

Ritalin, Metadate, Focalin, Methylin, Dextroamphetamine, Adderall, ProCentra

- Good for flexible dosing options
- Achieve faster peak levels
- Achieve higher peak levels
- □ may be better for some patients
- Capable of very low dose titrations
- □ may be better for very young children
- Rapid on - rapid off: avoid “feeling on” all day
- Useful as boosters

Extended-Release Formulations

Concerta, Focalin-XR, Metadate CD, Metadate ER, Ritalin-LA, Daytrana, QuilliChew ER, Quillivant XR, Aptensio XR, Adderall XR, Adzenys XR-ODT, Dextedrine Spansule, Dyanavel XR, Evekeo. Vyvanse

- Generally Favored
- Easier, for parents and patients
- No need for in-school dosing
- Stability of effect for most of day
- Improved treatment adherence
- Less abuse/misuse potential
- Better profile for pts at risk for substance abuse
“Drug Holidays”

- Periodic discontinuation of medication in order to:
 - Assess the patient's requirements
 - Decrease tolerance
 - Limit suppression of linear growth and weight

- Not mandatory
 - Some patients may not need a holiday
 - In some cases may be counterproductive

Turning attention to ADHD: An Express Scripts report
U.S. Medication trends for Attention Deficit Hyperactivity Disorder
March 2014

What about Comorbidities?

When stimulants may not be best initial choice:

- **Tic Disorders**
 - Alternatives
 - Atomoxetine
 - Stimulant, with α_2-agonist or SGA

- **Anxiety Disorders**
 - Atomoxetine
 - Stimulant, with SSRI for anxiety
What about Comorbidities?

When stimulants may not be best initial choice:

- **Substance Abuse Disorders**
 - Atomoxetine
 - M ethyphenidate Patch
 - Vyvanse

- **Depression, mania, aggression**
 - Treat more severe morbidity first
 - Depression, aggression

Non-Stimulant Medications
Atomoxetine (Strattera)

- First non-stimulant drug approved for ADHD
- Originally intended to be antidepressant drug
- Selective inhibition of pre-synaptic norepinephrine (NE) transporter – elevates NE only
- Response rate lower compared to methylphenidate
- May take weeks (6 – 8) to start working
- Provides 24 hour coverage of ADHD symptoms
- May be given in the evening / morning (with food!)
- Dosed by weight: target dose of 1.2 – 1.4 mg/kg daily/ max 80 mg in adolescents and 100 in adults

Side Effects:

Children: decreased appetite, nausea, vomiting, tiredness, upset stomach, palpitations, may increase BP/HR modestly

Adults: weight loss, abdominal pain, decreased appetite, vomiting, nausea, dyspepsia, insomnia, constipation, dry mouth, *genitourinary complaints* - decreased libido, ejaculation dysfunction, impotence, *urinary retention or hesitancy*, and dysmenorrhea.

Black Box - Increased suicidal thoughts

Monitoring is recommended
alpha2-agonists

Guanfacine ER (Intuniv) alpha 2A selective
Clonidine ER (Kapvay) non-selective

- Directly stimulates alpha-2A receptors
- Concentrated in prefrontal cortex & locus ceruleus
- Located postsynaptically (as opposed to autoreulatory presynaptic receptors in the brainstem).

Stimulation of postsynaptic alpha-2A thought to:

- Strengthen working memory
- Reduce susceptibility to distraction
- Improve attention regulation, behavioral inhibition and impulse control

- Common side effects include somnolence, sedation, abdominal pain, dizziness, hypotension, dry mouth and constipation
- Must taper with discontinuing
Thanks for listening

Have a wonderful Saturday night!!

Alan & Jody