USING GPS IN AIRCRAFT for Visual Navigation

A syllabus for training

v 02/2010
The Syllabus

A. CLASSROOM TRAINING

1. General Operations
 a. How does it work?
 b. Altitude, positions in 3D
 c. Accuracy
 d. Error factors
 e. Developments

 Critical points
 - System vulnerability
 - Minimum coverage
 - Dilution of precision, fallibility
 - Fallibility of GPS

2. Familiarisation with an actual GPS
 a. Powering the GPS
 i. Batteries
 ii. Rechargeables
 iii. External power
 b. Switching on the GPS
 i. Power on
 ii. Start up sequence
 iii. Autolocating & acquiring position
 iv. Selecting an initialisation method
 c. Operating Principles
 i. Main pages
 ii. Satellite status and positions pages
 iii. HSI/CDI/MAP pages
 iv. Active route page
 d. Configuration Checks
 i. Checking the database validity
 ii. Setting the timezone
 iii. Setting measurement units
 iv. Position format and map datum
 v. Setting battery type
 vi. Contrast and brightness
 vii. Bleeper settings
 viii. Display mode
 e. Exploring the information in database
 i. Preset information
 ii. Creating User Defined waypoints

 Critical points
 - Avoid & deal with battery failure
 - Rate & suddenness of discharge
 - Indications, deviation, free controls
 - Method
 - Database currency
 - Signal strength indications
 - Signal strength
 - Key ability to find way around GPS
 - Satellite status
 - Key familiarity
 - Key familiarity
 - Importance of validity
 - Correct zone
 - Units in operation
 - Units in operation
 - Possible misinterpretation of power
 - Key familiarity
 - Key familiarity
 - Maintain constant mode
 - Where to find which information
 - Creation & error checking

3. Using the unit's Simulator
 a. Starting the simulator
 b. Setting the simulator position
 c. Using GOTO (Direct To)
 d. Simulator speed
 e. Airspace warnings/Alarms
 f. Selecting waypoint by another method
 g. Map/Navigation settings
 h. Switching the simulator off

 Critical points
 - Availability, operation & indication
 - Setting position
 - Setting a destination
 - Setting speed
 - Relative urgency & importance
 - Other than ICAO codes
 - Configuration, track definitions, zone displays, items not in database
 - Selection, indication
B. IN THE AIRCRAFT

4. GPS In the Aircraft
 a. Positioning the GPS
 i. Yoke Mount
 ii. Dash Mount
 b. installing the antenna
 c. installing external power
 d. Check the installation
 i. Full and free check
 ii. Contrast and brightness
 e. Start up procedures
 i. Check database validity
 ii. Check power supply
 iii. Check satellite status
 iv. Check indicated position
 Controls balanced & unencumbered
 View, deviation, glare, turbulence
 Signal strength vs obstructions
 Deviation, cable routing
 Importance
 Importance of correct settings
 Routine for starting during checks
 Importance of check
 Importance of check
 Importance of check

5. Flight Planning and Flying a Route (Ground exercise)
 a. Check NOTAMS and weather
 b. Choosing waypoints
 c. Plan flight
 d. Enter route into the GPS
 e. Saving the route in the GPS
 f. Activating the route
 g. Configuring active route information
 h. Configuring map/navigation page(s)
 Importance of standard procedures
 Importance of factors affecting choice
 Importance of standard parameters
 Comparison error check
 Most can support multiple routes
 Importance
 Configurability, reasons for confusion
 Zone displays, Key data fields inc
 track definitions

6. First Flight (flown with instructor /safety pilot)
 a. Prepare the Flight
 b. Switch on
 c. Functional Checks
 d. Fly Headings not the GPS line
 e. Appreciation of navigation displays
 f. Include GPS in regular checks
 g. GPS at the waypoint
 Fly selected headings
 Check for coverage & power
 Compare with track and speed

7. Subsequent Flights
 a. In-flight cross checks
 b. Track corrections using GPS
 i. Bracketing track and actual "winds aloft"
 ii. Parallelling track
 iii. Regaining track
 c. Simple diversions using GPS
 d. More complex diversions
 e. Inverting the route
 f. Appreciation of navigation displays
 How to adjust
 Method
 Either quickly or at next waypoint
 How to use GO-TO (or equivalent)
 Around hazards – database risks
 Including specific legs
ABOUT THIS SYLLABUS

The Royal Institute of Navigation since its inception has aimed to improve the standards of navigation on land, sea and in the air. To that end, they have published material to assist recreational pilots (the aerial navigators of today), including a booklet on Visual Navigation Techniques and another on GPS use.

Over recent years, satellite navigation system receivers and their associated computers have become available at low cost to the general public, and recreational aviators have seized on the opportunities they have offered. However, it has become clear that, despite manufacturers providing instruction manuals and CDs, there is a need for pilots to have access to detailed training before they can feel confident to use the system as an effective back up to the visual techniques which should remain their primary means of navigation for reasons explained in the “GPS Use” leaflet.

The Institute’s General Aviation Navigation Group has therefore produced this syllabus of training to cover the competencies which they consider pilots need in order to use their GPS equipment successfully. Those providing the training should refer to the Instructors Guide, which expands on the basic syllabus to assist in preparing individual lessons, but it is emphasised that details of individual systems can only be found by reference to the manufacturer’s instructions. The individual equipment manual must of necessity be the source of the basic information being taught.

There is no requirement for anyone to be formally associated with the RIN in order to use this or any other of its training material. However, if training providers or their students feel that their own aims are aligned with those of the Institute, various categories of membership are available as detailed on the RIN web site www.rin.org.uk

The Royal Institute of Navigation (RIN) is a learned society formed in 1947. It has three main aims: to unite all those with a professional or personal interest in any aspect of navigation in one unique body; to further the development of navigation in every sphere; and to increase public awareness of both the art and science of navigation, how it has shaped the past, how it impacts our world today, and how it will affect the future.