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A B S T R A C T

In the last decade, technical advances in the field of medical imaging significantly improved and broadened the
application of coronary CT angiography (CCTA) for the non-invasive assessment of coronary artery disease.
Recently, similar breakthroughs are happening in the post-processing, analysis and interpretation of radiological
images. Technologies such as radiomics allow to extract significantly more information from scans than what
human visual assessment is capable of. This allows the precision phenotyping of diseases based on medical
images. The increased amount of information can then be analyzed using novel data analytic techniques such as
machine learning (ML) and deep learning (DL), which utilize the power of big data to build predictive models,
which seek to mimic human intelligence, artificially. Thanks to big data availability and increased computa-
tional power, these novel analytic methods are outperforming conventional statistical techniques. In this current
overview we describe the basics of radiomics, ML and DL, highlighting similarities, differences, limitations and
potential pitfalls of these techniques. In addition, we provide a brief overview of recently published results on
the applications of the aforementioned techniques for the non-invasive assessment of coronary atherosclerosis
using CCTA.

1. Introduction

Coronary CT angiography (CCTA) plays a pivotal role in the non-
invasive evaluation of coronary artery disease (CAD) and has gained
worldwide clinical acceptance.1–3 As a non-invasive and cost-effective
imaging tool, it has a great potential in reducing the global socio-
economic burden of CAD.4–6 The PROMISE trial has shown equal out-
comes considering the composite endpoint of death, myocardial in-
farction, hospitalization for unstable angina and major procedural
complication as compared to the established modality SPECT at after a
median follow-up of 25 months (3.3% vs. 3.0%, p=0.75). Further-
more, the SCOT-HEART trial demonstrated lower major adverse cardiac
event (MACE) rates (2.3 vs 3.9%, p < 0.001) for CCTA as compared to
standard of care after 4.8 years.1,2

The strength of CCTA lies in its ability to reliably exclude coronary
stenosis and, even more importantly, to directly visualize the vessel
wall and plaque morphology.7 This unique ability to characterize

coronary atherosclerosis is a major advantage of CCTA over competitive
diagnostic strategies.8 Hence, plaque characterization by CCTA has
become a major research focus over the past years. The detection of
high-risk plaque (HRP) markers allows for a highly specific labeling of
patients at increased risk for MACE.9,10 The four HRP markers (low
attenuation, positive remodeling, spotty calcification and the napkin-
ring sign) have been shown to positively correlate with adverse out-
comes and to predict ischemia even in non-obstructive lesions.11–15

CT technology has developed at unprecedented speeds over the past
years, meanwhile data-analysis and image interpretation has evolved at
a slower pace. CCTA interpretation relies on subjective image assess-
ment. However, the possibility to extract quantitative information may
provide a unique opportunity to overcome limitations of subjective
visual assessment. For example, the inter-reader reproducibility of HRP
features is poor (κ range: 0.15–0.34) even among experienced
readers.16 Furthermore, visual assessment is dependent on a priori
knowledge and has limited capabilities to discern subtle differences and
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to define new imaging markers.17 Novel image and data analytic
techniques such as radiomics, machine learning (ML) and deep learning
(DL) may decrease inter-reader variations, increase the amount of
quantitative information and improve the diagnostic and prognostic
accuracy, while reducing subjectivity and biases. In this overview, we
provide a broad overview on the application of radiomics, ML and DL
for the non-invasive assessment of coronary atherosclerosis using
CCTA.

2. General overview of radiomics, machine and deep learning

2.1. Radiomics

Radiomics is the process of extracting numerous quantitative para-
meters from radiological images to describe the texture and spatial
complexity of lesions.18 Radiomics provides a tool for precision phe-
notyping of abnormalities based-on radiological images.19 Its name
refers to its similarities with other “omics” techniques which create big
data on biological systems such as the genome to assist precision
medicine.20 Radiomics basically transforms images into data.17

2.1.1. First-order radiomic parameters
Radiomic features can be grouped into four categories.18 First-order

parameters use the Hounsfield units (HU) of the lesions to derive sta-
tistics describing the distribution of the HU values. These features such
as the mean HU, minimum HU or standard deviation of the HU discard
all spatial information and only rely on the frequency of specific HU
values. This results in significant information loss with regards to the
spatial distribution of HU values, since very different plaques can have
very similar first-order parameter values.

2.1.2. Higher-order textural features
This resulted in the development of higher-order features which aim

to describe not the HU distribution but the spatial distribution of the
voxels basically characterizing the texture and heterogeneity of the
lesion. These parameters originate from the field of computer vision,
when researchers were confronted in the 1970's with satellite images
and had to decide which areas are urban and which are industrial.21,22

The basic concept of these parameters is to quantify the spatial co-oc-
currence of given voxel values. For example, the gray level co-occur-
rence matrix (GLCM) describes the frequency by which given value
voxel pairs co-occur next to each other.21 From this probability matrix
different metrics are derived, which quantify for example the degree of
heterogeneity in the image, which is defined as how often dissimilar
value voxels co-occur next to each other. Another common matrix is the
gray level run length matrix (GLRLM) which quantifies the frequency of
identical voxel values occurring next to each other repeatedly in a given
direction.22 Based on these, features can be derived describing the

texture of an abnormality. Several other matrices exist, which look at
different attributes of the voxels and their surroundings.23–25

2.1.3. Shaped-based radiomic parameters
Shape based parameters quantify the spatial complexity of the lesion.

These parameters range from commonly known parameters such as the
surface or volume of a lesion or lesion component (e.g. low attenuation
plaque volume) to more complex entities such as compactness which
quantifies how the surface and the volume relate to each other. Another
class of geometrical parameters are fractal dimensions which enu-
merate self-symmetry.26 Self-repeating patterns can be observed in our
environment, for example how the trunk of a tree divides can also be
appreciated in how the branches divide and also in how the veins of a
leaf divide. Fractal dimensions enumerate this self-symmetry and offer
a quantitative approach to measure spatial complexity.

2.1.4. Transform based radiomic features
Medical images are basically intensity values in the spatial domain.

Transform based metrics transfer this spatial information into another
representation for example the frequency domain. The resulting new
image or data then can be analyzed using previously discussed
methods, or used to filter out specific information from the image.
Illustrative pictograms of the classes of radiomic statistics can be found
in Fig. 1.

2.2. Machine learning

The amount of available medical information is increasing at ex-
ponential speeds.27 Currently the difficulty is not how to get medical
big data, but how to organize, analyze and clinically utilize the data
collected in biobanks and repositories. Conventional statistical methods
utilize probability theory to create mathematical formulas which de-
scribe the relationship between variables. This approach is usually ac-
ceptable for population-based analysis, but in the era of precision
medicine and big data, new methods are needed which can model
complex non-linear relationships and infer results specific to each case
rather than being generally true to the population.

2.2.1. Concept of artificial intelligence and machine learning
Humans are skilled at identifying unique patterns and inferring

complex connections between data. However, this natural intelligence is
not based on mathematical equations, but on observations and ex-
perience. Artificial intelligence (AI) tries to create models which think
and act humanly and rationally.28 To achieve this, first inputs are
needed from the environment. Then this information and the previous
observations need to be stored and analyzed, which can be performed
using ML. ML is an analytic method a sub-division of AI, which uses
computer algorithms with the ability to learn from data, without being

Fig. 1. Pictograms of classes of radiomic parameters.
First-order parameters calculate statistics based on the Hounsfield distribution of the voxel values and discard all spatial information. Higher order metrics calculate
statistics based on the spatial co-occurrence of specific voxel values. Shape based statistics quantify the spatial complexity and self-symmetry of the lesion. Transform
based methods convert the spatial information into another domain, such as the frequency domain to calculate radiomic statistics.
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explicitly programmed.29 These algorithms are similar to the human
learning process, in the sense that more data they are trained on, the
better they perform. In the medical field the main goal of ML techniques
is to harvest the potential of big data to discover new relationships in
the data that conventional statistical methods might not be able to.
While conventional statistical approaches can provide a clear mathe-
matical formula regarding the relationship of the variables, not all
methods of ML are capable of describing the connection between
parameters through mathematical equations. Instead they build their
predictive models based-on patterns in the data experienced through
training, and make prediction by comparing a new instance to previous
similar occurrences.30 To better understand how ML works, we describe
examples of ML algorithms to help the readers have a general under-
standing of these methods.

2.2.2. Supervised learning algorithms
Supervised learning algorithms try to predict to which class a new

instance belongs to (e.g. disease +/−) or what continuous value the
instance has (e.g. Agatston score). To achieve this, supervised learning
algorithms require labeled data to be trained on. One of the most in-
tuitive algorithms is the k-nearest neighbor, which is based on the in-
tuition that cases that are close to each other usually have much in
common. In case of a classification problem, it evaluates which class the
neighbors belong to and assigns the class that is most frequent among
its k number of neighbors. In case of regression, it assigns the average
value of its k number of neighbors. As one can appreciate, the value for
k is chosen arbitrarily. This is referred to as a hyperparameter. As op-
posed to conventional linear regression equation, which only has one
solution, ML models can have infinite number of solutions depending
on the values of these hyperparameters. The optimal values for these
hyperparameters need to explored balancing between overfitting and
underfitting the ML model. Another commonly used method is based on
the human decision-making process and is called decision trees. For
example, if the goal is to assess CAD risk, the first step is to gather risk
factors and based on one of the parameters (for example gender) the
data is split into two groups. Then based on the next parameter the data
is split further (for example age ranges) to achieve more homogeneous
sub-groups. This methodology can be observed in guideline flow dia-
grams and also in risk calculation charts. An important difference is that
decision trees select which parameters to use and where to divide them
based on information theory and not on common knowledge. This data
driven approach quantifies for each parameter the amount of ran-
domness (entropy) that is reduced if the data is divided on a given
metric. This so-called information gain (IG) can also be used to quantify
the relative importance of a parameter with respect to a given outcome.
However, this is a univariate analytic method, and therefore does not
consider possible collinearities in the data.31 Finally, as a last example
for supervised learning, we would like to discuss neural networks, which
are mathematical models inspired by the biological brain of how
learning and decision making happens or could happen in living or-
ganisms.32 The basic concept of neural networks is that the biological
brain provides an archetype of an intelligent system capable of under-
standing its inputs and making rational decisions based-on previous
experiences. Therefore, a logical idea is to reverse engineer the struc-
ture of the biological brain and to build computational models, so called
neural networks mimicking its behavior. The building blocks of neural
networks are single perceptrons or neurons. The perceptron receives in-
puts which are multiplied by weights, similarly to a neuron, which
receives inputs through its dendrites. Based on an activation function
(e.g. logistic function) it outputs either a continuous or binary value,
similarly to a neuron through its axon. The simple perceptron is similar
to a regression equation. Several perceptron can be put next to each
other to create a single layer perceptron, which is capable of solving
complex problems. Furthermore, by adding new layers of perceptrons,
multi-layer perceptrons can be created. The perceptron layers which are
neither connected to the inputs nor give the final output are called

hidden layers. Neural networks which have two or more hidden layers
are called deep neural networks (DNN). These networks are basically
many interconnected regression equations, where the output of one
equation is the input to another equation.

2.2.3. Unsupervised learning algorithms
Unsupervised learning algorithms on the other hand use unlabeled

data. The intention is not to predict the value of a new instance, but for
example to find clusters in the data and assign the cases to these clus-
ters. Then these clusters can be compared and further analyzed to infer
new relationships in the data. The most common method is k-means
clustering. This algorithm groups the data into k clusters by minimizing
the distances of the instances to the center of the clusters. Several other
clustering algorithms exist. However, evaluating which clustering
techniques performs the best is not trivial and can lead to significantly
different results.

2.2.4. Semi-supervised learning algorithms
Semi-supervised learning algorithms utilize data that are both labeled

and unlabeled. It is used in cases when there is a large amount of data,
however labeling all cases is not feasible. By adding some labeled cases
to the model, the semi-supervised models usually outperform un-
supervised learning since more information is present regarding how
many clusters there may be, or what the distribution of the parameters
are in each group.
Pictorial examples of ML models can be seen in Fig. 2.

2.3. Deep learning

DL refers to a sub-division of ML, which expands on the basics of
DNN to create complex neural architectures to solve difficult problems,
which using conventional programing based on mathematical logic
would be impossible. Some complex architectures are inspired by
nature. For example, instead of fully connecting all the perceptrons in a
neural network as a simple DNN, skip connection similar to pyramidal
cells in the cortex of the brain, skips some hidden layers to activate a
neuron deeper in the network.33 There is no exact boundary from which
we would consider neural networks DL. It is rather a concept describing
the use of complex neural networks for tasks that are commonly needed
in AI, such as image recognition, natural language processing or clas-
sification and clustering. In addition to the interpretation and proces-
sing of data, complex neural architectures can be helpful to find effi-
cient representations of the data using auto-encoders or restricted
Boltzmann machines by reducing the dimensionality of the dataset.34

Furthermore, these complex neural models can also be used to generate
data. So called generative adversarial networks are capable of creating
images of human faces which look similar to real faces.35

2.3.1. Convolutional neural networks
Convolutional neural networks commonly used for image recogni-

tion, are inspired by how the visual cortex is structured.36 Instead of
feeding all the inputs (pixels or voxels) to each neuron in the initial
layer, only those pixels or voxels that are in the receptor field of the
neuron are used. Similar to the visual cortex this allows identification of
simple structures, such as lines. However, as we go deeper into the
neural network, the neurons are capable of identifying more complex
structures and eventually are able to classify the images, similar to as
how our brain would.37 Convolutional neural networks are extensively
used in radiology for image segmentation and classification and have
the potential to transform the field of radiology.38

2.4. Similarities and differences between radiomics, machine and deep
learning

Radiomics is a feature generation approach. Based on human expert
opinions, mathematical models are built to describe complex ideas such
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as texture or spatial complexity. Hundreds of different parameters can
be calculated, all emphasizing different aspects of these concepts. The
resulting big data databases then can be analyzed using conventional
statistical methods, methods used in genomics or can be inputs to ML
models. On the other hand, DL uses the raw data, the pixel or voxel
values themselves. Using convolution, imaging features are auto-
matically defined in the network, rather than defined beforehand based
on expert knowledge. While we know which neurons are activated and
know all the parameters of the fitted neural network, we have very
limited information as to what it is actually seeing and what features
are identified. Several research efforts are currently being conducted to
improve the interpretability of the models and to provide solutions for
the medical community to better understand how these models work.
For example, by highlighting the pixels from which the model came to
its conclusion, the medical professionals can better understand and
interpret the outputs of these neural networks.39,40

On the other hand, radiomics can be seen as a precision pheno-
typing method for medical images, where the imaging features are
carefully defined beforehand based-on expert opinions. It creates a
phenogram, for example an atherosclerotic plaque fingerprint, which
describes that specific lesion. The parameters, which produced the re-
sults can be interpreted in a straight forward manner as opposed to the
DL outputs. Similarities and differences in radiomics, ML and DL with
respect to AI can be appreciated in Fig. 3.

3. Limitations and potential pitfalls of radiomics, machine and
deep learning

3.1. Radiomics

Radiomic parameters are calculated from the HU values of voxels,
and therefore all possible effects, which influence HU values (CT
hardware, patient characteristics, tube voltage and current, kernel, re-
construction algorithm, etc.) may influence radiomic statistics. There is
only limited data on how these potential influencing factors may affect
radiomics statistics derived from CCTA images.41 Furthermore, as the
metrics are calculated from a volume of interest (e.g. the coronary
plaque) segmentations may also affect the parameter values. None-
theless, radiomic parameters are constructs created by humans. Po-
tentially infinite number of parameters could be defined; however, it
remains a question what is the optimal number and type of radiomic
parameters. Furthermore, with increasing number of parameters the

possibility of overfitting also increases. Therefore, careful evaluation is
needed in all cases to preserve generalizability.

3.2. Machine learning

ML techniques are superior to conventional statistical methods as
they are able to model unique patterns in the data. However, similar to
radiomics, consider: large number of parameters are used, thus they are
prone to overfitting. Running a ML model on the whole population, and
evaluating its diagnostic accuracy on the same population is incorrect.
This can lead to biased estimates and result in diagnostic accuracies
around 100% and AUC values of 1.0. The gold standard of evaluating a
model is by evaluating its diagnostic accuracy on an external validation
cohort. However, in many cases this is not feasible, and therefore a test-
set is created from the data by randomly setting aside 20–40% of the
data, which is only used for evaluating the fitted model which is opti-
mized on the training set. Setting aside a test-set is not reasonable in
some cases, when there is only a limited number of data. In these cases,
n-fold cross-validation may be used. The data is partitioned into n
equally sized subsamples. The ML model is trained on n-1 subsamples,
and is evaluated on the remaining subsample. This is done n times so
that each instance in the dataset was part of the evaluation once. The
accuracies from each fold are averaged to receive an overall measure of
diagnostic accuracy. To receive a better estimate, this can be repeated
several thousands of times with random sampling to get a better esti-
mate of accuracy. This usually still leads to overestimation of the di-
agnostic accuracy, but is better than modeling and validating on the
whole dataset. Furthermore, with all statistical methods, ML is prone to
training biases. As all other statistical techniques, it makes its predic-
tions based on the data it was trained on. Therefore, applying it to
datasets which the training data does not represent well, can lead to
biased results and inaccurate predictions. In addition, models learn
from the training dataset and therefore are inherently limited to the
quality of the data.

3.3. Deep learning

Neural network models have hundreds or even thousands of per-
ceptrons, which require optimization to determine their value in the
models. Therefore, several thousands of images are needed for the
network to converge to a solution in this n-dimensional hyperspace.
However, having such a large number of labeled datasets in medicine is

Fig. 2. Examples of machine learning algorithms.
K nearest neighbors algorithm searches for a new instance's nearest neighbors. Based on how many neighbors you consider, or the distance from the new case, the
decision to which group to classify the given instance can be different. Decision trees classify instances based on rules. Splitting the cases based on a parameter (P1), we
might be able to differentiate a sub-group of cases which belong to the same class (G1). The remaining instances need to be split based on different parameters (P2-4)
to receive reasonable classification accuracy (G2-5). Neural networks are based on the architecture of our brains. The inputs (statistical parameters, or raw data: voxels)
make up the input layer (I1-5), which in case of a fully connected neural network are connected to the hidden layers (H1-7). Then the last hidden layer is connected to
the output (O1) which produces the result of the model.
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difficult. Furthermore, as these models learn from cases they were
taught on, they will have difficulties to identify unusual cases of which
only a few cases are available. While radiologist can identify rare cases
after seeing a few instances, these models require many more cases to
be able to recognize these instances with acceptable accuracy. In ad-
dition, DL networks can be tricked. So called adversarial images can be
used, which can be added to images as noise which the human eye
cannot see, but alters the output of the neural network to be completely
wrong.42–44

4. Current results of implementing radiomics, machine and deep
learning to cardiac CT

4.1. Radiomics

Among HRP features, the napkin-ring sign is the only qualitative
feature, solely depending on the interpretation of the medical profes-
sional.45 As its reproducibility varies widely (κ: 0.15–0.86) more
quantitative methods, less dependent on the knowledge of medical
professions would be warranted.15,16 An initial study investigating the
potential of radiomics in atherosclerosis imaging, selected 30 napkin-
ring sign plaques and matched them with 30 non napkin-ring plaques
which were however similar in degree of calcification and stenosis,
plaque localization, tube voltage, and image reconstruction.46 Among
the calculated 4440 radiomics parameters, 20.6% of the parameters
was consider: significantly different between the two groups at a cor-
rected p level of 0.0012, while none of the conventional quantitative
parameters showed any difference. The best radiomics parameter
(short-run low-gray-level emphasis) significantly outperformed the best
conventional parameter (mean plaque attenuation) to identify the
napkin-ring sign (cross-validated AUC: 0.89 vs. 0.75; respectively).
Furthermore, cluster analysis revealed 44 information clusters among
the radiomic parameters indicating that there might be more types of
plaque morphology as opposed to the four HRP which are known from
the literature.
CCTA is considered an anatomical imaging modality. However,

implementing radiomic analysis could potentially extract more in-
formation from images than visually possible, potentially identifying

not only morphologic characteristics but also radionuclide activity.
When applying radiomic analysis to CCTA, the presence of sodium
fluoride positron emission tomography activity could be predicted with
excellent diagnostic accuracy as compared to any of the conventional
qualitative or quantitative CCTA parameters (cross-validated AUC: 0.87
vs. 0.65; respectively).47 Furthermore, even though CCTA has limited
spatial resolution to identify thin-cap fibroatheroma as opposed to in-
travascular imaging techniques, it seems that implementing radiomics
can increase the diagnostic accuracy of CCTA to identify intravascular
ultrasound attenuated plaque and optical coherence tomography thin-
cap atheroma as compared to currently used qualitative and quantita-
tive parameters (cross-validated AUC: 0.72 vs. 0.59; 0.80 vs. 0.66; re-
spectively).47

4.2. Machine learning

Applying ML to the CONFIRM registry revealed that using clinical
CTA and anthropometric parameters the diagnostic accuracy to predict
5-year all-cause mortality could be increased as compared to the
Framingham risk score and CTA based risk scores.31 The authors also
reported the relative importance of parameters using IG in a univariate
fashion which indicated that several CTA parameters are linked to all-
cause mortality. A similar investigation looked at the composite end-
point of myocardial infarction and death at a mean follow-up time of
4.6 years. As opposed to the previous investigation the authors trained a
ML model incorporating segmental stenosis and calcification informa-
tion without any anthropometric data. The authors of the latter
manuscript split their data into a training set and a separate test set
which was not used for training, only the evaluation of the models, as
opposed to the previous investigation. This method is superior to cross-
validation which may significantly overestimate the diagnostic accu-
racy.48,49

Not only clinical CCTA and anthropometric information can be used
as inputs to ML, but also vessel geometry which can be used to predict
CT derived fractional flow reserve (FFR).50 In this CT-FFR algorithm,
the ML model which used DNN was trained on 12 000 synthetic cor-
onary vessel models. However, the model was trained using computa-
tional fluid dynamic results, and therefore could not increase the

Fig. 3. Flow diagram showing the possible implementations of artificial intelligence to medical data and showing the similarities and differences between radiomics,
machine learning and deep learning.
Artificial intelligence tries to mimic natural intelligence through automating processes that are needed for an intelligent system to perceive, interpret and respond to
its surroundings. Medicine can utilize the benefits of machine learning to help interpret the large amounts of data currently available in medicine. In case of
radiological images, radiomics can be used to extract vast amounts of information, which can be inputs to machine learning. On the other hand, deep learning
automatically identifies imaging markers in the neural network while training, rather than defining them beforehand.
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diagnostic accuracy of ML based FFR-CT as compared to the compu-
tational fluid dynamics model (AUC: 0.89 vs. 0.89, p=0.41; respec-
tively). This shows a training bias, which is a limitation of ML and DL as
the model accuracy influenced by the training dataset.51

ML can also be used for improving the tissue characterization cap-
ability of CT. In a single-center investigation using intravascular ul-
trasound as a reference, histogram parameters of plaques on CTA were
used to teach a ML model to differentiate fatty from fibro-fatty plaques.
The ML model outperformed simple thresholding (cross-validated AUC:
0.92 vs. 0.83, p=0.001; respectively).52

4.3. Deep learning

Convolutional neural networks have been used to provide a semi-
automatic method for coronary tree extraction. With DL the authors
were able to achieve 93.7% overlap with manually annotated reference
centerlines from an external validation cohort.53 These results show
that DL may be able provide automated workflows and assist evaluation
of radiological images. DL could also increase the diagnostic accuracy
of our imaging modalities. Implementing DL for the characterization of
the myocardium from CCTA images could help to identify hemodyna-
mically significant stenoses. In a cohort of 126 patients, the researchers
found that combining diameter stenosis with DL evaluation of the
myocardium significantly improved the diagnostic accuracy to identify
hemodynamically significant stenoses as compared to just diameter
stenosis (cross validated AUC: 0.76 vs. 0.68; respectively).54,55

5. Conclusions

Similar to how the advancements in medical imaging hardware had
a significant impact on cardiac CT imaging and moved this anatomical
imaging test towards the direction of comprehensive CAD assessment;
new image analytic techniques such as radiomics, ML and DL will re-
shape the field of cardiac imaging by increasing the amount of quan-
titative information extracted from CT datasets. This has the potential
to further our understanding of CAD and provide a more precise diag-
nostics and prognostication. However, these techniques are still in their
infancy and the way to routine clinical application needs to overcome
many potential pitfalls and will require rigorous testing and the de-
velopment of a dedicated legislative frameworks. Nevertheless, as fast
as AI is transforming our everyday lives, these changes may come
sooner than later.
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