Global Alterations in Mechanical Function in Healed Reperfused First Anterior Myocardial Infarction

Christopher M. Kramer, Charles J. McCreery, Lori Semonik, Walter J. Rogers, Thomas P. Power, Amy Shaffer, and Nathaniel Reichek

Division of Cardiology, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania

ABSTRACT

Two-dimensional analysis techniques were applied to breathhold magnetic resonance (MR) tagged images in humans to better understand left ventricular (LV) mechanics 8 weeks after large reperfused first anterior myocardial infarction (MI). Eighteen patients (aged 51 ± 13 yr, 15 men) were studied 8 ± 1 weeks after first anterior MI as were 9 volunteers, (aged 30 ± 3, 7 men). Breathhold MR myocardial tagging was performed with short-axis images spanning the LV from apex to base. Myocardial deformation was analyzed from apical, mid-LV, and basal slices using two-dimensional analytic techniques and expressed as L_1 (greatest systolic lengthening), L_2 (greatest systolic shortening), and β (angular deviation of L_1 from the radial direction). LV ejection fraction (EF) by MR imaging in the patients after MI was 45 ± 15%. The apex and midventricle in patients demonstrated reduced L_1 and L_2 and increased β compared with normal subjects with the greatest abnormalities at the apex, as expected in anterior infarction. However, in addition, basal L_1 was lower than normal subjects (10 ± 6% versus 19 ± 7%, $p < 0.0001$) as was L_2 (14 ± 7% versus 17 ± 6%, $p < 0.04$). β was greater than normal at the base (23 ± 20 degrees and 14 ± 10 degrees, $p < 0.02$). L_2 correlated significantly with EF in the patient group ($EF = 2.6 \times L_2 + 7, r = 0.68, p < 0.002$). After healing of reperfused first anterior MI, maximal lengthening and maximal shortening and the orientation of maximal strains are abnormal throughout the left ventricle, including mild abnormalities at the base. This suggests more diffuse abnormalities in regional mechanical function than simply within the zone of healed infarction.

KEY WORDS: Magnetic resonance imaging; Mechanics; Myocardial contraction; Myocardial infarction.
INTRODUCTION

Previous methods used to evaluate myocardial function after myocardial infarction (MI) track endocardial motion (1) or wall thickening (2). These methods are limited in infarcted myocardium by passive motion due to pull from dyskinetic and/or normal regions and by motion of the heart through the imaging plane. Measurements of strains in two and three dimensions have been performed with invasive marker implantation but may be limited by myocardial damage caused by the implants and the small number of sites sampled (3-5). Magnetic resonance (MR) myocardial tagging (6,7) allows one-dimensional (1D) (8), two-dimensional (2D) (9), and three-dimensional (10) analysis of intramyocardial motion and deformation. Tag stripe intersections can be used to delineate planar triangular myocardial elements and assess their deformation during systole. Assuming homogenous strain within each triangle, the deformation of the triangles can be calculated (9). Using MR tagging in an animal model of chronic infarction, we previously demonstrated abnormal circumferential myocardial elements and assess their deformation in healing human infarction, we applied 2D analysis techniques early after anterior MI (12). In 2D analysis of tagged images in humans, we demonstrated abnormal circumferential shortening in remote noninfarcted myocardium early after anterior MI (13) that later improved to some extent (14). Others have used 2D analysis techniques early after anterior MI (15). To better understand myocardial mechanical function in healed human infarction, we applied 2D analysis techniques to MR tagged images in humans 8 weeks after large reperfused first anterior MI.

MATERIALS AND METHODS

Patient Population

The study was approved by the Institutional Review Committee in accordance with institutional guidelines. All gave informed consent. Eighteen patients, 15 men, aged 51 ± 13 yr, were studied 8 ± 1 weeks after first anterior MI. All had an initially occluded left anterior descending (LAD) artery and no other arteries with a >50% stenosis and had been treated acutely with thrombolysis (n = 3), primary angioplasty (n = 11), or thrombolysis followed by rescue angioplasty (n = 4). The mean time to the start of reperfusion therapy was 388 ± 210 min in the 16 patients for whom this was known. The peak creatine kinase was 3167 ± 2190. All had a patent infarct-related artery and TIMI III flow by contrast angiography in the first several days after infarction. The mean ejection fraction (EF) by left ventriculography or echocardiography in the first week post-MI was 40 ± 8%. The patients’ medications during the 8-week period after infarction included aspirin in 15, angiotensin-converting enzyme inhibitors in 15, beta-blockers in 13, warfarin in 8, digoxin in 4, nitrates in 2, and diuretics in 1.

Nine volunteers with normal echocardiograms at baseline were studied with the same techniques; seven were men and their mean age 30 ± 3 yr.

MR Imaging

MR imaging was performed in a Siemens Magnetom SP 1.5-T scanner with the patient prone on an elliptical spine surface coil. The imaging protocol was well described previously (13,14). Briefly, localizing scout images were followed by a short-axis cine series in a plane near the mitral valve, which provided images every 40 msec to identify end-systole as the point of minimum left ventricular (LV) cavity area. A series of multiphase, short-axis, single-slice, tagged images were obtained using a breathhold multiple phase-encoded gradient-echo method and segmented k-space trajectory. Tag stripe separation was 7 mm, field of view was 280 mm, and matrix size 128 × 256, interpolated to 256 × 256 for display, yielding a pixel size of 1.19 mm². Image planes 7 mm thick were generated, spanning the entire LV cavity from apex to base (Fig. 1). The breathhold spanned 18 heartbeats or 14-15 sec per breathhold. TR (repetition time) was adjusted (from a minimum of 58 msec to a maximum of 90 msec) so as to time one image during the five-phase image series at end-systole.

Image Analysis

Regional function was analyzed using a software package (SPAMMVU, © Univ. of PA) loaded on a Silicon Graphics workstation and previously published methods (9,12,15). The epicardial and endocardial contours of the left ventricle were manually traced at each phase of the cardiac cycle in three slices, one each from apex, midventricle, and base. Tag stripes were then tracked through systole using an automated tracking procedure based on an active contour model. Triplets of stripe intersections defined triangular elements within the myocardium (Fig. 2). Most of these triangles were midmyocardial due to the 7-mm interstripe distance with a wall thickness of 10-12 mm. Within each element, components of systolic deformation of the triangle were measured, including L1 (greatest systolic stretch or percent-
Mechanical Function in Healed Anterior MI

Figure 1. (A) End-systolic breathhold gradient-echo MR tagged image at the apex in a patient 8 weeks after anterior MI treated with primary angioplasty. The intraventricular septum lies from 7 o’clock to 10 o’clock on the image adjacent to the right ventricle (RV) apex, the anterior wall from 10 o’clock to 1 o’clock, the lateral free wall from 1 o’clock to 4 o’clock, and the inferior wall from 4 o’clock to 7 o’clock. Note the thinning of the anterior septum and the reduced deformation of the tag stripes around the entire circumference of the left ventricle. (B) End-systolic breathhold gradient-echo MR tagged image at the midventricle in the same patient and same orientation with the intraventricular septum and mid RV seen from 7 o’clock to 10 o’clock on the image. Deformation of the tag stripes is better preserved in the lateral and inferior walls. (C) End-systolic breathhold gradient-echo MR tagged image at the base in the same patient and same orientation with the intraventricular septum and RV outflow tract seen from 7 o’clock to 11 o’clock on the image. The anterior wall and septum demonstrate normal wall thickness but reduced deformation.
Figure 2. Schematic representation of the strain analysis at end-diastole (top) and end-systole (bottom) in a single triangle within the wall of the LV. The triangle has deformed at end-systole with $L_1 = \text{greatest systolic lengthening}$, $L_2 = \text{greatest systolic shortening}$, and $\beta = \text{angular deviation of } L_1 \text{ from the radial direction}$.

age of systolic lengthening in the direction of maximum lengthening), L_2 (greatest systolic shortening or percentage of shortening in the direction of greatest shortening), and β (angular deviation of L_1 from the radial direction) (9,12,15).

LV mass was calculated from planimetered epicardial and endocardial areas of stacked short-axis end-diastolic tagged images from apex to base using Simpson’s rule according to previously published techniques (11,14) and was indexed to body surface area. LV end-diastolic volume index, LV end-systolic volume index, and EF were calculated using planimetered end-diastolic and end-systolic areas in the same manner.

Statistical Analysis

Comparisons between patients and normal subjects were made using Student’s t-test for unpaired comparisons. Linear regression analysis was performed for EF and end-systolic volume index versus L_1, L_2, and β, respectively. Results are displayed as mean \pm SD. $p < 0.05$ was considered significant.

RESULTS

Global LV Parameters

During the MR scan, the patients’ heart rate was 74 \pm 15, systolic blood pressure 122 \pm 21, and diastolic blood pressure 74 \pm 17. Analysis of the MR images demonstrated that the LV mass index was 102 \pm 19 g/m2, the LV end-diastolic volume index was 101 \pm 28 ml/m2, and the end-systolic volume index was 56 \pm 25 ml/m2. The EF was 45 \pm 15%.

Maximum Principal Strain

At the apex, all regions around the short axis demonstrated depressed L_1 compared with normals, save for the lateral wall (Table 1). When the results from all four regions were averaged, the apex in patients had an L_1 of 5 \pm 13% versus 15 \pm 5% in normal subjects ($p < 0.0001$). Similarly, in the midventricle, only the lateral wall demonstrated normal L_1. The midventricle as a whole had a lower L_1 than normal (8 \pm 7% versus 15 \pm 5%, $p < 0.0001$). At the base, all four regions around the LV base showed depressed L_1, and when averaged the basal L_1 was significantly lower than normals (10 \pm 6% versus 19 \pm 7%, $p < 0.0001$). When levels along the long axis were averaged, all four circumferential regions demonstrated reduced L_1 when compared with volunteers. The septum had a L_1 of 6 \pm 15% compared with 19 \pm 7% in normals ($p < 0.0001$). Anterior L_1 was 6 \pm 6% versus 13 \pm 5% in normals ($p < 0.0001$), and in the lateral wall L_1 was 12 \pm 7% compared with 18 \pm 6% ($p = 0.0003$). In the inferior wall, L_1 was 7 \pm 6% in the MI patients and 15 \pm 5% in normal subjects ($p < 0.0001$).

Minimum Principal Strain

All regions around the LV short axis at the apex had decreased minimum principal strain (Table 2) and the apex as a whole had an L_2 of 14 \pm 8% compared with 23 \pm 5% for normals ($p < 0.0001$). Similarly, all regions in the midventricle showed decreased L_2 and on average had an L_2 of 15 \pm 7% versus 21 \pm 5% in human volunteers ($p < 0.0001$). At the base, only the septum demonstrated a decrease in L_2 (11 \pm 6% in patients compared with 17 \pm 3% in normals, $p < 0.0001$), but the base as
Mechanical Function in Healed Anterior MI

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Septum</th>
<th>Anterior</th>
<th>Lateral</th>
<th>Inferior</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>19 ± 6</td>
<td>12 ± 5</td>
<td>18 ± 6</td>
<td>14 ± 5</td>
<td>15 ± 5</td>
</tr>
<tr>
<td>AMI</td>
<td>0 ± 5*</td>
<td>6 ± 4†</td>
<td>10 ± 8</td>
<td>4 ± 7†</td>
<td>5 ± 13‡</td>
</tr>
<tr>
<td>Midventricle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>16 ± 4</td>
<td>11 ± 5</td>
<td>17 ± 6</td>
<td>14 ± 4</td>
<td>15 ± 5</td>
</tr>
<tr>
<td>AMI</td>
<td>8 ± 7§</td>
<td>6 ± 7*</td>
<td>13 ± 6</td>
<td>8 ± 5§</td>
<td>8 ± 7†</td>
</tr>
<tr>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>22 ± 8</td>
<td>15 ± 6</td>
<td>21 ± 6</td>
<td>16 ± 6</td>
<td>19 ± 7</td>
</tr>
<tr>
<td>AMI</td>
<td>10 ± 7†</td>
<td>8 ± 6*</td>
<td>12 ± 6§</td>
<td>8 ± 5§</td>
<td>10 ± 6‡</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>19 ± 7</td>
<td>13 ± 5</td>
<td>18 ± 6</td>
<td>15 ± 5</td>
<td></td>
</tr>
<tr>
<td>AMI</td>
<td>6 ± 15‡</td>
<td>6 ± 6‡</td>
<td>12 ± 7†</td>
<td>7 ± 6‡</td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.05 vs. normal subjects.
† p < 0.0001 vs. normal subjects.
‡ p < 0.001 vs. normal subjects.
§ p < 0.01 vs. normal subjects.
AMI, acute myocardial infarction.

A whole had significantly decreased L2 at 14 ± 7% versus 17 ± 6% in normal subjects (p < 0.04).

When data across the LV long-axis levels were averaged, L2 was decreased in each region around the short axis. Septal L2 was reduced (11 ± 6% compared with 17 ± 3%, p < 0.0001) as was anterior L2 at 16 ± 8% (versus 22 ± 5% in normals, p = 0.0002). Lateral L2 was 17 ± 6% in patients and 24 ± 5% in volunteers (p < 0.0001), and inferior L2 was similarly decreased (14 ± 7% compared with 19 ± 7%, p < 0.01).

Angle of Maximum Principal Strain

The relationship of maximum principal strain to the radial direction is altered after anterior MI, greatest in the apex (Table 3). β is greater in patients than in normal

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Septum</th>
<th>Anterior</th>
<th>Lateral</th>
<th>Inferior</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>20 ± 3</td>
<td>25 ± 4</td>
<td>25 ± 8</td>
<td>24 ± 6</td>
<td>23 ± 5</td>
</tr>
<tr>
<td>AMI</td>
<td>12 ± 8*</td>
<td>15 ± 9*</td>
<td>16 ± 7†</td>
<td>15 ± 7†</td>
<td>14 ± 8‡</td>
</tr>
<tr>
<td>Midventricle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>16 ± 2</td>
<td>22 ± 4</td>
<td>27 ± 3</td>
<td>19 ± 4</td>
<td>21 ± 5</td>
</tr>
<tr>
<td>AMI</td>
<td>11 ± 4§</td>
<td>16 ± 7‡</td>
<td>19 ± 7†</td>
<td>15 ± 5§</td>
<td>15 ± 7‡</td>
</tr>
<tr>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>16 ± 4</td>
<td>20 ± 5</td>
<td>21 ± 5</td>
<td>14 ± 7</td>
<td>17 ± 6</td>
</tr>
<tr>
<td>AMI</td>
<td>10 ± 4*</td>
<td>18 ± 7</td>
<td>17 ± 5</td>
<td>13 ± 7</td>
<td>14 ± 7§</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>17 ± 3</td>
<td>22 ± 5</td>
<td>24 ± 5</td>
<td>19 ± 7</td>
<td></td>
</tr>
<tr>
<td>AMI</td>
<td>11 ± 6‡</td>
<td>16 ± 8†</td>
<td>17 ± 6‡</td>
<td>14 ± 7*</td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.01 vs. normal subjects.
† p < 0.001 vs. normal subjects.
‡ p < 0.0001 vs. normal subjects.
§ p < 0.05 vs. normal subjects.
AMI, acute myocardial infarction.
Table 3

β (in Degrees) in the Two Groups

<table>
<thead>
<tr>
<th></th>
<th>Septum</th>
<th>Anterior</th>
<th>Lateral</th>
<th>Inferior</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>11 ± 7</td>
<td>18 ± 6</td>
<td>7 ± 4</td>
<td>11 ± 6</td>
<td>12 ± 7</td>
</tr>
<tr>
<td>AMI</td>
<td>41 ± 20*</td>
<td>37 ± 21†</td>
<td>30 ± 22‡</td>
<td>28 ± 16‡</td>
<td>34 ± 20§</td>
</tr>
<tr>
<td>Midventricle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>9 ± 2</td>
<td>10 ± 3</td>
<td>6 ± 2</td>
<td>15 ± 10</td>
<td>10 ± 6</td>
</tr>
<tr>
<td>AMI</td>
<td>27 ± 19‡</td>
<td>24 ± 19†</td>
<td>17 ± 19</td>
<td>21 ± 12</td>
<td>22 ± 18§</td>
</tr>
<tr>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>9 ± 3</td>
<td>17 ± 7</td>
<td>9 ± 6</td>
<td>21 ± 15</td>
<td>14 ± 10</td>
</tr>
<tr>
<td>AMI</td>
<td>21 ± 20</td>
<td>32 ± 24</td>
<td>19 ± 18</td>
<td>19 ± 13</td>
<td>23 ± 20†</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals</td>
<td>10 ± 5</td>
<td>15 ± 6</td>
<td>7 ± 4</td>
<td>16 ± 11</td>
<td></td>
</tr>
<tr>
<td>AMI</td>
<td>30 ± 21§</td>
<td>31 ± 22*</td>
<td>22 ± 20*</td>
<td>23 ± 14†</td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.001 vs. normal subjects.
† p < 0.05 vs. normal subjects.
‡ p < 0.01 vs. normal subjects.
§ p < 0.0001 vs. normal subjects.
AMI, acute myocardial infarction.

Subjects in all regions around the short axis in the apex and for the apex as a whole is 34 ± 20 degrees compared to 12 ± 7 degrees (p < 0.0001). In the midventricle, β is significantly greater than normal in the septum (27 ± 19 compared with 9 ± 2 degrees, p = 0.01) and anterior wall (24 ± 19 versus 10 ± 3 degrees, p < 0.05) and for the midventricle as a whole (22 ± 19 compared with 10 ± 6 degrees in normal subjects, p < 0.0001). At the base, no individual region is abnormal, but on average the base demonstrates a greater β than normal (23 ± 20 and 14 ± 10 degrees, respectively, p < 0.02).

When data across the LV long-axis levels were averaged, the angle β was increased in each region around the short axis. Septal β was 30 ± 21 compared with 10 ± 5 degrees (p < 0.0001) and anterior β was 31 ± 22 compared with 15 ± 6 degrees (p < 0.001). Lateral and inferior similarly showed elevated β (22 ± 20 versus 7 ± 4 degrees, p < 0.001, and 23 ± 14 compared with 14 ± 10 degrees, p < 0.05, respectively).

Relationship Between Global and Regional Function

For EF and end-systolic volume index, no significant relationship was found with either L1 or β. However, both correlated significantly with L2. The correlation for EF was EF = 2.6 × L2 + 7 (r = 0.68, p < 0.002) (Fig. 3). For end-systolic volume index, the relationship was
LV systolic volume index = 125 - 4.6 × L2, (r = 0.74, p = 0.0004).

DISCUSSION

We used MR tagging to noninvasively track myocardial mechanical function through systolic in patients 8 weeks after large anterior MI and single-vessel LAD disease and compared it with a cohort of normal volunteers. We found that after healing of reperfused first anterior MI, the maximum and minimum principal strain and the orientation of maximal strain are abnormal throughout the left ventricle. The abnormalities in deformation are greatest as expected at the apex of the left ventricle. However, the base demonstrates abnormal mechanics, including mildly abnormal maximum and minimum principal strain and abnormal direction of the maximal strain, suggesting more diffuse abnormalities in regional mechanical function than simply within the zone of healed infarction. LV EF and LV systolic volume index, the most powerful predictors of outcome post-MI, correlated best with minimum principal strain.

Comparison with Prior Studies

Holmes et al. (5) characterized the changes in deformation over the first 3 weeks post-MI within transmurally infarcted tissue in a pig model using implanted radiopaque markers. They found significant scar shrinkage and passive deformation due to shearing of the endocardium relative to the epicardium. Wall thickening appeared to be preserved due to this shearing motion but was overestimated due to the passive deformation. They concluded that analysis of wall thickening alone may be an inadequate assessment of intramyocardial function postinfarction. The present study demonstrated that the greatest segment lengthening was not in the direction of wall thickening but was in an oblique direction in the infarcted apex and at the base. In addition, greatest lengthening did not correlate with global EF.

The first MR tagging studies applying 2D analysis of intramyocardial strains in healed infarction were in an ovine model 8 weeks after transmural anteroapical MI (16). Maximal lengthening and maximal shortening were reduced (13 ± 3% and 13 ± 3%, respectively) in the short-axis plane in noninfarcted adjacent regions in comparison with remote regions. These values correspond well to those of the midventricle of the patients in the present study, which likely includes both infarcted and adjacent tissue (8 ± 7% and 15 ± 7%, respectively). In addition, as in the present study, β was abnormal in noninfarcted regions in the ovine model (37 ± 1 degrees in adjacent regions and 20 ± 3 degrees in remote regions).

MR tagging studies of intramyocardial mechanics in human infarction have primarily been performed in the subacute phase. Our previous studies using 1D techniques on day 5 after first anterior MI demonstrated depressed circumferential shortening (%S) throughout the LV, including remote noninfarcted regions (13). Because of abnormal β in these patients, L2 is not directly analogous to %S. In another study using 2D techniques in 10 patients at day 8 after anterior MI (15), the greatest abnormalities in strain parameters were within infarcted regions. By 8 weeks after anterior MI in our 1D analysis (14), %S trended lower at the base (17 ± 3% versus 19 ± 3% in normals, p = 0.11), consistent with the findings of the present study. However, %S had improved significantly throughout the LV compared with day 5 post-MI. Extrapolating from the 1D study, 2D strains may be worse in the early postinfarct period than demonstrated at 8 weeks, post-MI in the present study. Preliminary evidence suggests that no further changes in 1D strain occur up to 6 months post-MI (17).

Potential Mechanisms

The change in orientation of the maximum principal strain may be secondary to changes in geometry and fiber alignment in the postinfarct LV as it assumes a more spherical shape (18), causing elevated mechanical load on these regions as estimated in prior studies (19). MacGowan et al. (20) used MR tagging to demonstrate that in the volume overload state of idiopathic dilated cardiomyopathy, shortening in the fiber direction is markedly reduced as is shortening in the cross-fiber direction or 90 degrees to the fiber direction. In the midwall in the human heart, fibers are predominantly circumferential (21). In the present study, the angle of maximum strain is oblique relative to normal, suggesting that the direction of maximal strain is more circumferential, contributing less to wall thickening.

Cell slippage may be another potential cause of the change in orientation of the principal strains (22). Slippage of myocyte bundles may alter fiber orientation and change the direction of maximal strain. Other potential mechanisms include changes in the amount of collagen scar formation (23), although the significance of interstitial collagen within noninfarcted tissue is a matter of some debate (24). Abnormal deformation in noninfarcted myocardium may be caused by stenoses in noninfarct-
related arteries (25), but patients with other than single-vessel LAD disease were excluded from this study.

Limitations

Transmural resolution of the 2D analysis technique is limited due to the 7-mm interstripe distance. Most triangles are therefore in the midwall, and subendocardial and subepicardial mechanics are less well represented. ID analysis techniques (13) allow improved transmural resolution, as would smaller interstripe distances that are in the developmental stage.

Representative apical, mid, and basal slices were analyzed in the present study. Until more automated analysis techniques are available, the 2D finite element analysis used in this study will not be as easily applied in a multislice fashion that would cover the entire heart.

The control subjects were younger than the patient population, and there may be subtle age-related changes in intramyocardial deformation as shown in a preliminary study by Rademakers et al. (26). This group found in 87 normal volunteers that endocardial fiber shortening fell slightly with age from the second to seventh decade (26.1% to 24.4%, \(p < 0.0001 \)), although epicardial strains remained unchanged with age. The differences in strains in the present study are likely to be greater than could be accounted for by age differences between patients and controls. In addition, controls were normal subjects, as opposed to patients with coronary artery disease without prior infarction. However, intramyocardial strain abnormalities would not be expected at rest in such patients but would be seen more likely under conditions of stress, such as with dobutamine infusion.

Thirteen of the 18 patients were on beta-blockers at the time of study. Beta-blockers have known negative inotropic properties in the acute setting. However, a recent meta-analysis of clinical trials studying chronic beta-blockade in LV dysfunction demonstrated improvement in global systolic function (an increase in EF of 29%) (27).

Future Directions

The advent of MR diffusion imaging will allow study of myofiber orientation in such patients on a local level (28). Combining information about fiber orientation with strain in the future will enhance the understanding of regional myocardial mechanics after infarction. In addition, the ability to noninvasively measure myocardial perfusion with gadolinium-based contrast agents would allow matching of intramyocardial strain patterns with measures of myocardial blood flow (29).

ACKNOWLEDGMENTS

Supported by a grant from the Allegheny Singer Research Institute. We gratefully acknowledge the expertise of the magnetic resonance technologists at Allegheny General Hospital, especially June Yamrozik and Lois Miller.

REFERENCES

11. Kramer CM, Lima JAC, Reichek N, Ferrari VA, Llaneras MR, Palmon LC, Yeh I-T, Tallant B and Axel L. Re-
Mechanical Function in Healed Anterior MI

