ICH Q12: Perspectives on Post-approval

Renan Gois
Health Regulatory Expert
Office of Evaluation of Post-approval Changes for Small Molecules

Brazilian Health Regulatory Agency - Anvisa
Disclaimer

Brazilian Health Regulatory Agency - Anvisa

This presentation does not necessarily reflect the policies and views of Anvisa.
• Introduction;
• Perceived problem;
• Intentions;
• Lifecycle:
 o Risk Management;
 o Established Conditions.
• Challenges.
Introduction

Brazilian Health Regulatory Agency - Anvisa

ICH Q8: Pharmaceutical Development

Application of scientific approaches and quality risk management

Greater understanding of pharmaceutical and manufacturing sciences

Basis for flexible regulatory approaches

Innovation and continual improvement

ICH Q10: Pharmaceutical Quality System (PQS)

ICH Q9: Quality Risk Management
Introduction

Brazilian Health Regulatory Agency - Anvisa

Review timeline

Post-approval regulation

Stability requirements

Dossier format
Introduction

Brazilian Health Regulatory Agency - Anvisa
Perceived problem

lack of a harmonized approach on lifecycle management

confusion on the necessary information and level of detail in the dossier

post-approval flexibility not achieved

hinder innovation and continual improvement

post-approval tools
Intention

Brazilian Health Regulatory Agency - Anvisa

ICH Q12

- Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management

SCOPE

- Pharmaceutical products, including currently marketed chemical, biotechnological and biological products

APPLICABILITY

- Lifecycle of the product, focusing particularly on the Commercial Manufacturing phase
Agência Nacional de Vigilância Sanitária - Anvisa

lack of a harmonised approach on lifecycle management
classification on the necessary information and level of detail in the dossier
post-approval flexibility not achieved
post-approval tools
hinder innovation and continual improvement

Intention

Brazilian Health Regulatory Agency - Anvisa
Intention

Brazilian Health Regulatory Agency - Anvisa

ICH Q12 Lifecycle Management

ICH Q8: Pharmaceutical Development

ICH Q10: Pharmaceutical Quality System (PQS)

ICH Q9: Quality Risk Management

Innovation and continual improvement

Application of scientific approaches and quality risk management

Greater understanding of pharmaceutical and manufacturing sciences

Basis for flexible regulatory approaches
Intention

Brazilian Health Regulatory Agency - Anvisa

ICH Q12 Lifecycle Management

Issues to be Resolved

Regulatory Dossier
- Development of a harmonized approach to “regulatory commitments”
- Delineate the appropriate level of detail and in the dossier

PQS
- Establish criteria for a harmonized risk-based change management system
- Clarify expectations and reinforce the need to maintain a knowledge management system

Post-Approval Change Management
- Proactively identify post-approval changes
- Mechanism to submit and assess these changes by regulatory authorities
- Establish criteria for post-approval tools that can be adopted by the ICH regions
Intention

Brazilian Health Regulatory Agency - Anvisa

ICH Q12 Lifecycle Management

Desired Outcomes

• Complement the existing ICH Q8 to Q11 Guidelines
• Facilitate the management of post-approval CMC changes in a more predictable and efficient manner across the product lifecycle
• Promote innovation and continual improvement
Lifecycle

Brazilian Health Regulatory Agency - Anvisa

Definition

All phases in the life of a product from the initial development through marketing until the product’s discontinuation.

(ICH Q8)
Lifecycle

Brazilian Health Regulatory Agency - Anvisa

- Drug substance development;
- Formulation development;
- Manufacturing process development;
- Analytical method development.

- From Development to Manufacturing;
- Transfers within or between manufacturing sites

- Acquisition and control of materials;
- Provision of facilities, utilities and equipment;
- Production;
- Quality control and assurance.

Based on ICH Q10
<table>
<thead>
<tr>
<th>Aspect</th>
<th>Minimal Approaches</th>
<th>Enhanced, Quality by Design Approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Pharmaceutical Development</td>
<td>Mainly empirical
Developmental research often conducted one variable at a time</td>
<td>Systematic, relating mechanistic understanding of material attributes and process parameters to drug product CQAs
 Multivariate experiments to understand product and process
 Establishment of design space
 PAT tools utilised</td>
</tr>
<tr>
<td>Manufacturing Process</td>
<td>Fixed
Validation primarily based on initial full-scale batches
Focus on optimisation and reproducibility</td>
<td>Adjustable within design space
Lifecycle approach to validation and, ideally, continuous process verification
Focus on control strategy and robustness
Use of statistical process control methods</td>
</tr>
<tr>
<td>Process Controls</td>
<td>In-process tests primarily for go/no go decisions
Off-line analysis</td>
<td>PAT tools utilised with appropriate feed forward and feedback controls
Process operations tracked and trended to support continual improvement efforts post-approval</td>
</tr>
<tr>
<td>Product Specifications</td>
<td>Primary means of control
Based on batch data available at time of registration</td>
<td>Part of the overall quality control strategy
Based on desired product performance with relevant supportive data</td>
</tr>
<tr>
<td>Control Strategy</td>
<td>Drug product quality controlled primarily by intermediates (in-process materials) and end product testing</td>
<td>Drug product quality ensured by risk-based control strategy for well understood product and process
Quality controls shifted upstream, with the possibility of real-time release testing or reduced end-product testing</td>
</tr>
<tr>
<td>Lifecycle Management</td>
<td>Reactive (i.e., problem solving and corrective action)</td>
<td>Preventive action
Continual improvement facilitated</td>
</tr>
</tbody>
</table>

Differing Approaches to Pharmaceutical Development

ICH Q8, Appendix I
Lifecycle: Established Conditions

Brazilian Health Regulatory Agency - Anvisa
Critical elements which assure process performance and product quality across the lifecycle

Legally binding information

Proposed in the Application

Approved by Regulator

Changes are reported using relevant post-approval submission
Lifecycle: Established Conditions

Brazilian Health Regulatory Agency - Anvisa

PQS

Scientific- Risk-based

• Established Conditions

 • Risk-based regulatory decisions
 • Adjustment within design space
 • Reduction of post-approval submissions

Pharmaceutical Development

Manufacturing Experience

CQA

Specifications

Design Space

Manufacturing Controls

Product Quality

Process Performance

PRODUCT PERFORMANCE

Established Conditions

process parameters

material attributes
Lifecycle: Established Conditions

Brazilian Health Regulatory Agency - Anvisa

Science Based

Product Understanding

CMC

EC

non-EC

Post-approval Regulatory Submission (different reporting levels)

Solely in PQS
Challenges

• Harmonization among different countries and regulatory contexts
• Application to small and large molecules
• Application to currently marketed products
• Measurement of PQS effectiveness
• Regulatory flexibility tools through non-ICH members
• Product-by-product science- and risk-based approach
• Definition of EC within CMC elements and location in the dossier
• Assessment of EC
• Different ECs approved in different regions
Thank you for your attention!

Renan Gois
Health Regulatory Expert
Office of Evaluation of Post-approval Changes for Small Molecules

renan.gois@anvisa.gov.br

www.anvisa.gov.br