Titanium for Ground Combat Vehicles
Supporting Our Forces At War
BAE Systems Land and Armaments
ITA September 2005
T. James Dorsch
Outline

- Concern about availability
- Effect on future vehicle material selection
- Availability of small R&D quantities
- Price
- Fabrication
- Recommendations/Summary
Welcome to BAE Systems
Over 100,000 combat vehicles designed and built in all weight classes

- Bradley A3
- Bradley FIST
- C2V
- Thunderbolt
- AAV
- M88A2
- MLRS
- NLOS-C SD
- M109A6
- FAASV
- VLS
- M113 A3
- M9 ACE
- Mk 45
- MGV-W
- MGV-T

🌟 In service with the U.S. Army and/or USMC in Operation Iraqi Freedom
🌟 Advanced prototypes
🌟 In service with the U.S. Navy in Operation Iraqi Freedom
Future Combat System Program

- **BAE Systems providing**
 - Manned Ground Vehicle systems
 - NLOS-C howitzer
 - Infantry Combat Vehicle
 - Medical and Evacuation Vehicle
 - Maintenance and Recovery Vehicle
 - Common systems
 - Armor, Active Protection
 - Hybrid Electric Drive
 - Software
 - Armed Robotic Vehicle
 - Slated for full rate production 2012
 - Prototype development to start 2006
 - Trade studies underway to select hull materials
Delivery and Availability

- **Long lead time**
 - Affects R&D testing for future systems
 - Lack of ready availability for R&D testing

- **Current force vehicle production planning**
 - Need to account for delivery delays

- **Future vehicle production**
 - Delivery time can be built into schedule
Future program impact on capacity

- Future Combat System
 - Production begins in 2012
 - Possibility of several million pounds required per year

- What proportion of domestic production?
 - Effect on
 - Price
 - Delivery
 - What new technologies will be on line in 2012?
 - What are industry plans to increase capacity?

- Combined with external forces
 - Ferrotilanium demand
 - Energy costs
 - ……
- Ground vehicle buyers very sensitive to price
 - Traditionally use “cheap” steel and aluminum
 - Paradigm of initial acquisition, not life cycle cost
 - No tradition of $X per pound of weight saved
 - (Use of $100/lb ceramics planned for armor)
DoD Cost Reduction Efforts

- Armor MIL-Spec
 - MIL-PRF-46077
 - Performance based
 - Single melt
 - Looser chemistry compared to aerospace grade
 - Alternate chemistries to Ti64

- Non-Kroll reduction efforts
 - DARPA initiative
 - Industry initiatives

Have not observed any impact due to small quantity of armor grade produced
Fabrication costs

- Machining
- Welding
- High buy to fly ratio
- Near net shape processes desired
 - Castings
 - Forgings
 - SPF-DB
 -

Compounding raw material cost is high cost of fabrication
Welding for Combat Vehicles

- Not considered as critical as aerospace
- Yet requires maximum ballistic shock resistance
 - Impact and mine blast resistance
- AWS committee developing structural weld code
 - Includes ballistic shock test for “armor” applications
 - Test criteria/methodology being defined
Are current market conditions an aberration?
- Long lead time affecting future application of titanium on combat vehicles
- Price trends having similar effect
- Will promised new technology ever come to the market?
- Ti industry efforts to increase capacity welcome
 - Should include all manufacturing steps
 - Bottleneck analysis
- Army efforts to increase availability of titanium for armor applications is also welcome
- Let’s get suppliers and consumers together to plan for future
 - Long term corporate/program commitments needed
 - Macroeconomic assessment of titanium market over next decade