POWDER METALLURGY AND SOLID STATE PROCESSING OF ARMSTRONG TITANIUM AND TITANIUM ALLOY POWDERS

William H. Peter (Bill), Craig A. Blue, Jim O. Kiggans, John D.K. Rivard*
Oak Ridge National Laboratory, Oak Ridge, TN

Charlie Yu, Clive Scorey*, Joe Capone, and John McKernon
AMETEK Specialty Metal Products, Wallingford, CT

Bill Ernst
International Titanium Powder (ITP), Lockport, IL

T. James Dorsch
BAE Systems, Santa Clara, CA

ITA Annual Conference 2007, Orlando, FL
October 7-9 2007

* Formerly with Organization
Introduction

- Ti Offers Many Attractive Properties.
 - High Specific Strength.
 - Good Elevated Temperature Properties.
 - Excellent Corrosion Resistance.
 - Allows for Damage Tolerant Design.
- Cost and Availability Are a Concern
 - Lead Times 12 to 18 Months
 - Plate Prices of $35 to $50/Lb
- Cost Limits Application to Specific Markets.
- Critical Need for Basic Research into Lower Cost Refining and Processing
- New Low Cost Titanium Powders Could Initiate a Paradigm Shift in Titanium’s Use in Industry
- Oak Ridge National Laboratory is Working with Industry to Develop the Necessary PM Technologies to Consolidate the New Low Cost Ti Powders
Conventional Technology Compared to DARPA Funded Armstrong Process

- **Kroll Process**
 - Mg Reduction of TiCl₄
 - Batch Process
 - Requires Acid Leaching and Vacuum Arc Remelting
 - Finally Milled into Desired Product
 - PM Approach Not Attractive Except for Specialty Components

- **Armstrong (ITP) Process**
 - Reduction of TiCl₄ in Na Liquid Loop
 - Continuous Process
 - Ability to Produce Prealloyed Powder
 - Price of Powder Competitive with Kroll Sponge
 - PM Approach Economically Attractive
 - Thousands of Pounds of Powder Have Been Produced
International Titanium Powder (ITP), Armstrong Process Titanium Powder

- New 4 Million Pound Titanium Plant Under Construction in IL, U.S.
- Chemical Analysis of Powder Has Fallen within Specification
 - Grade 2 for CP Ti (e.g., 0.12 to 0.21 wt. % O)
 - Grade 5 for Ti-6Al-4V
- Typical Powder Particle Size Range: 150 to 2000 µm with a mean size of 400 µm
- Energy Consumption for Reduction Process
 - Armstrong Process = 165 MBtu/ton
 - A 53.4% Reduction in Energy Consumption.
- “Low Cost” Powder Allows for:
 - Near Net Shape Consolidation
 - Compositing and Layered or Engineered Structures
 - Ability to Use Beneficial Elements Not Possible in Conventional Processing (E.g., Small Additions of Boron)
Processing – Cost Break Down of Fabricating 1” Ti Plate

- ITP “Low Cost” Ti Powders Developed in DTi Program Address 25% of 1” Plate Fabrication Costs
- The Secondary Processing or Processing into Finished Product (62% VAR and Milling) Needs to Be Addressed
- Conventional Milling Operations, Scrap Generated: 40 to 60%
- PM Approach with ITP Powder Ability to Reduce Scrap to Less Than 10%

Cost Break Down to Produce 1” Thick Titanium Plate Using Kroll – VAR Melted Titanium

Development of Multiple PM Processes for Economical Product

- **Near Net Shapes**
 - Hot Pressed, Forged, Press+Sinter

- **Plate**
 - Forged, PIF, Hot Roll, HIP

- **Bars and Rod**
 - Extrusion

- **Sheet**
 - Roll Compacted

- **Low Cost Ti Powder**
Vacuum Hot Pressing (VHP) of ITP CP Ti and Ti-6Al-4V – Plate and Near Net Shape Production

- Armstrong Ti and Ti-6Al-4V powder were vacuum hot pressed.
- Interstitial Levels of ITP CP Ti, VHP Produced Plate within Specification
- Mechanical testing, microstructures, and chemical analysis comparable to conventional wrought properties.

<table>
<thead>
<tr>
<th>Sample</th>
<th>YS [MPa]</th>
<th>UTS [MPa]</th>
<th>Ductility [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITP VHP CP Ti 900°C/30min</td>
<td>517</td>
<td>617</td>
<td>20.7</td>
</tr>
<tr>
<td>CP Ti Grade 2</td>
<td>345</td>
<td>448</td>
<td>20.0</td>
</tr>
<tr>
<td>ITP VHP Ti-6Al-4V 950°C/60min</td>
<td>963</td>
<td>994</td>
<td>13.8</td>
</tr>
<tr>
<td>Ti-6Al-4V Grade 5</td>
<td>828</td>
<td>897</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Fatigue Testing Procedure for VHP Ti-6Al-4V Plate

- Ti-6Al-4V ITP Powder Pressed at 1,050°C, 1 hour in Vacuum
- Initial powder had slightly high oxygen compared to ASTM Grade 5 (O₂ ~ 0.23 wt. %).
- Consolidated Plate: O₂ ~ 0.25 wt. %, 200 ppm pickup
- Hot Rolled VHP Plate (850°C, 50% reduction)
- Round Bar Specimen with 1/8" testing diameter, less than half hot rolled gauge thickness
- R ratio, s_{min}/s_{max} = 0.1
- Frequency = 10 Hz
Ongoing Fatigue Results

- Preliminary Results of Specimens Taken Normal to Rolling Direction Indicate ITP VHP Ti-6Al-4V Samples Are Comparable to Conventionally Pressed and Forged Powders

DTi “Low-Cost” Ti-6Al-4V Plates Show Comparable Ballistic Results to Conventional Wrought Plate

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

- VHP Consolidated Plate (950°C and 1,050°C)
- Ballistics testing performed at BAE Systems using MIL-DTL-46077G spec.
 - 0.30 cal APM2 (same as 7.62mm AP).
 - Velocity increased until 0.5” plate was penetrated.
- 1,050°C Plate - Estimated $V_{50} \approx 2,037 \text{ fps}$, within 2% of conventional wrought Ti-6Al-4V properties for specific thickness of plate (ref: MIL-DTL-46077 spec).
 - No cracking.
 - Good deformation/ductility (note: #4, Back).
 - Extremely limited spalling.
- 950°C Plate – Estimated $V_{50} > 2,097 \text{ fps}$, within 0.3% of specification for specific plate thickness WITHOUT penetration. V50 test could not be completed due to insufficient test area.
- Low-cost Ti-6Al-4V plate exhibited comparable performance to wrought plate.
Development of Cold Isostatic Pressing / Pneumatic Isostatic Forging (CIP/PIF) Process

- Necessity for Cost Effective Method of Producing Plate and Near Net Shape Components
- PIF AMETEK Patented Process – Rapid Gas Pressurization (1 to 2 Minutes)
- Very Preliminary CIP/PIF Work Performed with AMETEK Shows Promise
- Ballistic Results Have Been Comparable to Wrought Plate
- Mechanical Evaluation Ongoing

<table>
<thead>
<tr>
<th>Description</th>
<th>VHP</th>
<th>CIP/PIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of Theoretical Density</td>
<td>99.4%</td>
<td>99.6%</td>
</tr>
<tr>
<td>Oxygen Pickup (wt. %)</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Microstructure</td>
<td>Equiaxed</td>
<td>Equiaxed</td>
</tr>
<tr>
<td>Hardness (VHN)</td>
<td>343 +/- 31.9</td>
<td>346 +/- 27.3</td>
</tr>
</tbody>
</table>
Ti Processing – Extrusion

- Mechanical testing and microscopy

ORNLE, 1250 ton extrusion press

Extruded CP Ti Tensile Bars

As-extruded Ti

Tensile Bars

Sample*	YS [MPa]	UTS [MPa]	Ductility [%]
Extruded Ti | 407 | 552 | 17.0
Ti Grade 2 | 345 | 448 | 20.0

* Insufficient Ti-6Al-4V powder was available at the time of initial extrusion demonstration. Recent increase in ITP Ti-6Al-4V powder production will enable ORNL to produce Ti-6Al-4V extrusions and test bars in the near future.
Roll Compaction of Armstrong (ITP) Derived Ti Powders

- Collaborative Effort Between ORNL and AMETEK to Develop Roll Compaction Manufacturing Technology for Low Cost Titanium Powders
- Both Commercially Pure Ti and Ti-Al-V Alloys Have Been Roll Compacted
- ITP Powder Has Resulted in:
 - Green Densities of 60 to 70%
 - Sheet Widths of 15” (or Greater) and Proof of Continuous Production (Coils of 28’ in length)
- Solid State Sheet Processing After Roll Compaction: Sinter, Cold Roll, And Anneal Lead to Fully Consolidated Sheet (>99%)
- Initial Trial Resulted in High Strength/Low Ductility Due to High Oxygen
- However, Further Development Has Led to Acceptable Oxygen Levels: 200ppm Pickup or Less During Roll Compaction, and Less Than 800ppm Pickup After Full Consolidation – Mechanical Testing Ongoing

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
Results of ITP Ti Press+Sinter

- ITP CP Ti and Ti-6Al-4V Powders
 - Pressed to Pressures of 100 ksi
 - Sintered at Temperatures 1,100°C and 1,300°C
- Densities for given loads and temperatures:
 - Up to 90% theoretical for CP Ti
 - Up to 95% theoretical for ITP Ti-6Al-4V
- < 300 to 400 ppm pickup in oxygen
- Further Work in Progress
Conclusions

• Low Cost Titanium Powders Are Now Produced That Could Cause a Paradigm Shift in the Use of Titanium for Industry and Other Applications.
• Further Development in Solid State Consolidation of the New Titanium Powders Is Required to Realize the Most Economical Components and Penetrate New Markets.
• Vacuum Hot Pressed Plates and Extruded Bar of the Low Cost Titanium Have Been Produced with Tensile Properties that Meet ASTM Specifications.
• Very Preliminary Ballistic and Fatigue Results are Encouraging.

Future Work

• Further Development of Existing Work Shown
 • Comprehensive Mechanical Testing for Various PM Approaches (CP Ti, Ti-6Al-4V)
 • PM Development of Other Low Cost Powders as Made Available
• Currently Fabricating 200lb Military Component from ITP Powders
• Welcome Any Further Collaboration to Allow for the Penetration of Titanium Into New Markets

Heat Treatment and Rolling of Ti-6Al-4V Plates for 200lb Military Component
Acknowledgements

• The Research Presented Was Made Possible by the Support of:
 – Defense Advanced Research Programs Agency (DARPA), Defense Science Office (DSO), DARPA’s Initiative in Titanium Program (DTi)

• I would like to thank the following individuals:
 – Oak Ridge National Laboratory, Phil Sklad, Evan Ohriner, Steve Nunn, David Harper, Donny McInturff, Ed Hatfield, and Kevin Harper
 – International Titanium Powder, Stanley S. Borys, Lance Jacobsen, and Dariusz Kogut
 – AMETEK, Joe Capone, Greg Nelson
 – Taras Lyssenko

Questions?