Metal Injection Molding

material: implantable Grade Titanium and its alloys
company overview

• founded in December 2003

• certified according to DIN EN ISO 13485 : 2003

• currently the main focus is medical industry

• facility is dedicated to Titanium and its alloys

• several products have CE mark and are being implanted

• started high volume production this year

• activities include development of actual implants

• portfolio includes IPG cases made of Ti6Al4V, Super Plastic Formed
Ti MIM development overview

- the development for the MIM of Titanium started in 1997
- first parts implanted in 2005
- largest challenge was the feedstock composition and manufacturing
- development of this technology resulted in several additional Ti powder technologies
- creation of ASTM F standards for MIM Ti implants

the following materials are currently offered:

1. Commercially Pure Titanium
2. Titanium/Aluminum/Vanadium alloy Ti 6Al/4V
3. Titanium/Aluminum/Niobium alloy Ti 6Al/7Nb

other alloys like Nitinol (Ti/Ni) are possible as well

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced.
MIM process flow

1 Metal Powder + 2 Binder = 3 Feedstock

4 Green Part 5 Removing Binder 6 Solid Component

• feedstock developed and manufactured by TiJet

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced.
MIM design overview

- MIM-typical http://mimaweb.org/
- 3-Dimensional free form planes
- weight reduction through design
- very long and small holes
- inner and outer threads
- structured surfaces
- no or only minimal finishing treatment necessary
- minimal material loss in fabrication
- engravings, threads, inner contours, non-symmetric parts can be achieved
- optimization of part geometry through experienced applications engineers

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced
Titanium powder

EIGA - Electrode Induction-melting Gas Atomization

- powder particles are spherical and tailored to our MIM process
- particles usually have diameters smaller than 45 µm
- particle sizes can be adjusted to the product design

- currently use EIGA powder, but develop method for alternative powder
mechanical properties

Commercially Pure (CP) MIM Titanium, as sintered

- reference standards are ASTM B348, ASTM F67
- new ASTM F standard being written
- the material properties can be adjusted

<table>
<thead>
<tr>
<th></th>
<th>(R_{p0.2})</th>
<th>(R_m)</th>
<th>A</th>
<th>density</th>
<th>(O_2)</th>
<th>(N_2)</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti CP 1</td>
<td>> 350 MPa</td>
<td>> 440 MPa</td>
<td>>22%</td>
<td>>96%</td>
<td><0.25%</td>
<td><0.03%</td>
<td><0.08%</td>
</tr>
<tr>
<td></td>
<td>>51k PSI</td>
<td>>64k PSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti CP 2</td>
<td>> 430 MPa</td>
<td>> 510 MPa</td>
<td>>15%</td>
<td>>96%</td>
<td><0.25%</td>
<td><0.03%</td>
<td><0.08%</td>
</tr>
<tr>
<td></td>
<td>>62k PSI</td>
<td>>74k PSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced.
Mechanical Properties

MIM Titanium 6Al4V

- Ti 6Al/4V #1: as sintered (no densifying)
- Ti 6Al/4V #2: as densified (HIP)

- Reference standards are ASTM B348, ASTM F136, F1472
- New ASTM F standard being written
- The material properties can be adjusted

<table>
<thead>
<tr>
<th></th>
<th>Rp_{0.2}</th>
<th>Rm</th>
<th>A</th>
<th>Density</th>
<th>O_2</th>
<th>N_2</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti 6Al/4V #1</td>
<td>> 750 MPa</td>
<td>> 850 MPa</td>
<td>>12%</td>
<td>>96%</td>
<td><0.25%</td>
<td><0.05%</td>
<td><0.08%</td>
</tr>
<tr>
<td></td>
<td>>110k PSI</td>
<td>>123k PSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti 6Al/4V #2</td>
<td>> 860 MPa</td>
<td>> 930 MPa</td>
<td>>12%</td>
<td>>99.5%</td>
<td><0.25%</td>
<td><0.05%</td>
<td><0.08%</td>
</tr>
<tr>
<td></td>
<td>>125k PSI</td>
<td>>135k PSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced.
microstructure

- homogeneous microstructure
- grain size approx. 100 µm
- fine lamellar microstructure with $\alpha\beta$ – mixed structures

Cross section, polished & etched

BSE picture: light = β, dark = α
material properties

well over 1,000 tensile tests performed on MIM samples

- fracture surface of a MIM-tensile test sample
- honeycomb structure is shown
- typical sign for a ductile break

SEM picture of fracture area

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced
surface finish & porosity

the typical surface finish after the sintering process is slightly textures smooth finish:

- $Ra = 3$ to $5 \, \mu m$
- $Rz = 20$ to $30 \, \mu m$

surface - top view

cross-section of surface
biocompatibility tests to ISO standards

all tests proved the anticipated very good biocompatibility of MIM Titanium

consducted studies:

- Cytotoxicity
- Implantation / short – 7 days
- Implantation / long – 90 days
- Hemocompatibility
- Irritation, Sensitisation(LLNA), Reverse Mutation Assay, Acute Systemic Toxicity, Mammalian Cell Gene Mutation Assay

Implantation of the Portsystem titus

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced
surface finish

polished surface

polished and anodized surface

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced
surface finish

bead blasted and anodized

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced.
example: port system titus®

no 2nd operation needed

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced
example: compression screw

- **two self-cutting threads**
- **longitudinal hole with 3 mm hexagon socket throughout the part**
example: aortic-valve-prosthesis
example: aortic-valve-prosthesis

heart valve with three movable closing wings
• 3D-free-form surfaces
• wall thicknesses down to 0.4mm (.016")

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced
example: mini screw

hexagonal screw head
- Ø1,8 mm (Ø 0.071”)
- length: 18mm (0.709”)

CAD

Real sintered part

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced
example: base plate / implantable pump

- weight: approx. 50 grams
- dia. 78 mm (approx. 3”)
- cylindrical bore Ø 0,5 mm (0.020”)
- conical boring starting with Ø 0,8mm (.031”) down to Ø 0,4mm (0.16”)

The information contained herein is confidential and proprietary to TiJet Medizintechnik GmbH and shall not be reproduced
example: diffuser nozzle

cross-section of the finished part with undercut
example: housing for implant

- many design options available
- mat’l thickn. down to 0,3mm (0.012”)
- any Ti alloy possible
- Helium leak tested=>hermetically tight
- HIP optional
- excellent mechanical properties
porous coating

usage in medical industry:
- fixation of implant
- increased surface area (impedance)
- enhance bone growth
porous structure

- many different applications
- porosity level is controllable

porous structure made of spherical powder

porous structure made of irregular powder
Thank you!

Please feel free to contact Matthias Scharvogel at TiJet Medizintechnik GmbH

Tel (US): +1 (602) 904-5245
Tel (office): +49 431 65946 20
Tel (mobile): +49 171 6738526
matthias.scharvogel@tijet.de