ITA
October 2006
ATI 425™ Titanium
ATI 425™ Titanium

Today

– What is ATI 425™ Titanium
– A Few Facts
– Features, Advantages, Benefits
– Applications
– Development Status
• Do you use a hot process to fabricate titanium into products?
• Does the hot manufacturing process add to the cost of doing business?
• If you had a sheet, strip or coil titanium product that is “cold workable”, would that add value
 – To your business?
 – To your customer?
ATI 425™ Titanium
What is it?
An Alpha – Beta Alloy
Nominal Chemistry

• 4% Aluminum
• 2.5% Vanadium
• 1.5% Iron
• 0.25% Oxygen
• Balance Titanium
ATI 425™ Titanium Alloy

Patents
U.S. Patent No. 5,980,655, and pending
U.S. and foreign patent applications
ATI 425™ Titanium

• **Physical Properties**

 – Density 0.162 lbs/in³
 – MP ~2950°F.
 – Hardness 32-36RC
 – Beta Transus 1765 - 1785 °F.
Typical Tensile Strength

<table>
<thead>
<tr>
<th>Ti - 2</th>
<th>Ti - 12</th>
<th>Ti - 9</th>
<th>ATI 425™</th>
<th>Ti - 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>89</td>
<td>102</td>
<td>145</td>
<td>145</td>
</tr>
</tbody>
</table>

(Ti-3 Al-2.5V) (Ti-6 Al-4 V)
Typical Yield Strength

<table>
<thead>
<tr>
<th></th>
<th>Ti - 2</th>
<th>Ti - 12</th>
<th>Ti - 9</th>
<th>ATI 425™</th>
<th>Ti - 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>47</td>
<td>66</td>
<td>97</td>
<td>12.5</td>
<td>13.7</td>
</tr>
</tbody>
</table>

(Ti-3 Al-2.5V)

(Ti-6 Al-4V)
Typical % Elongation

- Ti - 2: 26.2
- Ti - 12: 22
- Ti - 9 (Ti-3 Al-2.5 V): 15.2
- ATI 425™ (Ti-6 Al-4 V): 15
- Ti - 5 (Ti-6 Al-4 V): 11
ATI 425™ Titanium

Cold Workable
ATI 425™ Titanium

Features

• Cold Workable
• High Strength
• Weldable - Ductile welds
• Machinable - Faster than Ti-64
• Super Plastic Formable - Like Ti-64
• Corrosion Resistant - Like Ti-64 & Ti-325
ATI 425™ Titanium Advantages

• Better Yield
• Smaller Bend Radii
• Cold Rolled Finish
• Better Gauge Control
• Coil Lengths
ATI 425™ Titanium Benefits

• Better Yield Means
 • Plant Efficiencies Improve

• Better Finish Quality Means
 • Less Processing Time

• Lower Converting Cost Means
 • Better Profitability
ATI 425™ Titanium Applications

- Aircraft Panels
- Formed Structural Panels, Honeycomb, Face-sheet
- Roll-Formed Structural Components
- Cold Formed, Stamped & Coined parts
- Fasteners
- Super-Plastic Formed Parts
- Aircraft Tubing
- Oil Field Tubing
- Structural & Recreational Uses
- Pressure Vessels
ATI 425™ Coil
0.125” T x 26” Hot Band

ATI 425™ SPF
Cover Sheet
Trial Parts
General Development Status

- Production to Date = 72,000 lb
- Mill Products Manufactured
 - Cold Rolled - Sheet, Strip, Foil
 - Cold Reduced Seamless Tubing
 - Hot Forged - Billet, Bar, Rod
 - Hot Rolled - Plate, Strip (Coil)
 - Hot Tubular Extrusion
 - Weld Wire

ATI 425™
0.085” Sheet ~ 500x
ATI 425TM Titanium
Certifications to Date

- ASTM Grade 38
- UNS #54250, UNS #54250-1
- ASME Boiler Code Case 2532
- Other certifications in process
 - AMS - #6946 in ballot, moving to Aerospace Council
 - AWS
ATI 425™ Titanium Tubing
Comparison Tubing Properties

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Yield (KSI)</th>
<th>Ultimate (KSI)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ti-3Al-2.5V</td>
<td>73 – 115</td>
<td>90 – 140</td>
<td>16 – 20</td>
</tr>
<tr>
<td>• Ti-6Al-4V ELI</td>
<td>105 – 133</td>
<td>125 – 150</td>
<td>7 – 17</td>
</tr>
<tr>
<td>• ATI 425™ Titanium CWSR</td>
<td>130</td>
<td>150</td>
<td>12 – 16</td>
</tr>
<tr>
<td>Annealed</td>
<td>116 – 122</td>
<td>140</td>
<td>14 – 18</td>
</tr>
</tbody>
</table>
 ATI 425™ Titanium

Cold Workable
Thank You

Questions?

john.seton@wahchang.com
ATI 425™ Titanium Mechanical Properties

<table>
<thead>
<tr>
<th>All Products¹ "Mill Anneal"</th>
<th>Longitudinal</th>
<th>Transverse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield (KSI)</td>
<td>Ultimate (KSI)</td>
</tr>
<tr>
<td>Typical</td>
<td>122</td>
<td>136</td>
</tr>
<tr>
<td>CW</td>
<td>150</td>
<td>176</td>
</tr>
</tbody>
</table>

1. All Products includes: HR plate; Wrought Bar & Billet; CR Sheet & strip; Hot Extrusion; Tube
Machining Comparison

Comparison Cutting forces at Baseline feeds & Speeds

ATI 425™ Titanium can be machined 15% faster than 6Al-4V

Courtesy Boeing M&PT Machining Lab
Uniaxial Tensile Tests of Titanium Sheet under SPF Conditions
Comparison of Ti-425 to conventional T-6Al-4V at 900°C and 3x10^-4/sec

True Stress (psi)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

m-value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

True Strain

0 0.5 1 1.5 2 2.5

T-425

Ti-6Al-4V

Super Plastic Forming Capability

Graphs courtesy Battelle NW
ASME Design Allowable Stresses for Ti Alloys

Max Allowable Stress (ksi)

Temperature (F)

ATI 425™

Ti - 9

Ti - 12

Ti - 2
Super Plastic Forming Capability

- SPF panels of welded ATI 425™ Titanium 0.100” cold-rolled sheet
- Hi-Tech Welding, El Cajon, CA
- Army Research Lab Trailer Project
Corrosion Properties

- In between Ti 6Al-4V and Ti-3Al-2.5V
- Evaluated in following media:
 - 40% Nitric 105°C.
 - 10% Hydrochloric 100°C.
 - 100% Acetic 118°C.
 - 100% Sulfuric 103°C.
 - 100% Seawater 100°C.
 - U-Bend Stress Corrosion Cracking

ATI 425™ Titanium Sheet
Coupons (U-Bend)
Mining Liquor Test
Electrical Resistivity*

- **ATI 425™ Titanium** 154 μ-ohm
- **CP** 56 μ-ohm
- **Ti64** 170 μ-ohm
 - *courtesy Hamilton Precision*
Characterization of Titanium ATI 425™ Titanium Alloy sheet under SPF Conditions

PNWD-3500 Battelle Northwest Laboratories

• “The Ti-425 alloy exhibited flow stress, elongations, and strain rate sensitivities that are suitable for commercial SPF applications."

• “The conventional Ti-6Al-4V sheet materials are often formed at a temperature of 900°C. in commercial practice, and it appears that the Ti-425 sheet will have similar performance during SPF at these conventional forming rates and temperatures”

• Characterization of Titanium Ti-425 Alloy Sheet under SPF Conditions

• Technical Report Prepared for Wah Chang
ATI 425™ Titanium Rammed Graphite Casting

Gun Pod Elevation Arm Stryker Vehicle

33” L X 7” X 7.5” 167#

<table>
<thead>
<tr>
<th>Yield</th>
<th>Ultimate</th>
<th>Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSI</td>
<td>KSI</td>
<td>%</td>
</tr>
<tr>
<td>120.3</td>
<td>134.7</td>
<td>12</td>
</tr>
</tbody>
</table>

Cast Plate

120 135 15(“L” & “T”)

Cast Plate ~ 100X
Mechanical Properties

Small Bar

Test Temperature deg. F.

Strength (KSI)

-100 -50 0 25 50 75 100 125 150 175 200

0 20 40 60 80 100 120 140 160 180

ATI 425™ Titanium

Ultimate Yield Elongation Reduction Area
ATI 425™ Titanium Compressive Yield Data *(Stavely)*

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Source</th>
<th>Heat</th>
<th>Gauge</th>
<th>SFC</th>
<th>Direction</th>
<th>Compressive Yield (KSI)</th>
<th>Tensile Properties</th>
<th>Oxygen (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-6Al-4V</td>
<td>Timet</td>
<td>H0063</td>
<td>0.064</td>
<td>S8329</td>
<td>Long.</td>
<td>142.8</td>
<td>138 (KSI)</td>
<td>145 (KSI)</td>
</tr>
<tr>
<td>Ti-6Al-4V</td>
<td>Timet</td>
<td>H0063</td>
<td>0.064</td>
<td>S8329</td>
<td>Long.</td>
<td>143.1</td>
<td>136 (KSI)</td>
<td>145 (KSI)</td>
</tr>
<tr>
<td>Ti-6Al-4V</td>
<td>Timet</td>
<td>H0063</td>
<td>0.064</td>
<td>S8329</td>
<td>Long.</td>
<td>144.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.060</td>
<td>1294701</td>
<td>Long.</td>
<td>138.3</td>
<td>134.5 (KSI)</td>
<td>155.1 (KSI)</td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.060</td>
<td>1294701</td>
<td>Long.</td>
<td>139.1</td>
<td>135.0 (KSI)</td>
<td>155.7 (KSI)</td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.060</td>
<td>1294701</td>
<td>Long.</td>
<td>137.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.060</td>
<td>1294701</td>
<td>Long.</td>
<td>137.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.060</td>
<td>1294701</td>
<td>Trans.</td>
<td>175.2</td>
<td>153.6 (KSI)</td>
<td>161.6 (KSI)</td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.060</td>
<td>1294701</td>
<td>Trans.</td>
<td>167.4</td>
<td>155.9 (KSI)</td>
<td>163.6 (KSI)</td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.060</td>
<td>1294701</td>
<td>Trans.</td>
<td>181.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.100</td>
<td>1294701</td>
<td>Long.</td>
<td>133.6</td>
<td>130.0 (KSI)</td>
<td>149.5 (KSI)</td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.100</td>
<td>1294701</td>
<td>Long.</td>
<td>136.0</td>
<td>129.6 (KSI)</td>
<td>149.2 (KSI)</td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.100</td>
<td>1294701</td>
<td>Long.</td>
<td>134.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.100</td>
<td>1294701</td>
<td>Trans.</td>
<td>170.6</td>
<td>149.6 (KSI)</td>
<td>157.4 (KSI)</td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.100</td>
<td>1294701</td>
<td>Trans.</td>
<td>168.6</td>
<td>149.8 (KSI)</td>
<td>158.0 (KSI)</td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>K898</td>
<td>0.100</td>
<td>1294701</td>
<td>Trans.</td>
<td>170.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>RD175</td>
<td>0.085</td>
<td>N/A</td>
<td>Long.</td>
<td>147.0</td>
<td>140.3 (KSI)</td>
<td>155.1 (KSI)</td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>RD175</td>
<td>0.085</td>
<td>N/A</td>
<td>Long.</td>
<td>145.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-425</td>
<td>WC</td>
<td>RD175</td>
<td>0.085</td>
<td>N/A</td>
<td>Long.</td>
<td>149.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATI 425™ Titanium

Creep Rupture Data ½” Plate Heat 797Y

Westmoreland

<table>
<thead>
<tr>
<th>Test Temp. (°F)</th>
<th>Stress (KSI)</th>
<th>L/T</th>
<th>Hours</th>
<th>Elongation (%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>90</td>
<td>Trans</td>
<td>1683</td>
<td>3.6</td>
<td>Broke</td>
</tr>
<tr>
<td>600</td>
<td>95</td>
<td>Trans</td>
<td>1692</td>
<td>4.7</td>
<td>Broke</td>
</tr>
<tr>
<td>600</td>
<td>95</td>
<td>Long</td>
<td>731</td>
<td>0.6</td>
<td>Discontinued</td>
</tr>
<tr>
<td>600</td>
<td>100</td>
<td>Trans</td>
<td>0</td>
<td>0.0</td>
<td>Fail @ Load</td>
</tr>
<tr>
<td>600</td>
<td>105</td>
<td>Long</td>
<td>0</td>
<td>0.0</td>
<td>Fail @ Load</td>
</tr>
<tr>
<td>700</td>
<td>75</td>
<td>Long</td>
<td>6651</td>
<td>16.4</td>
<td>Broke</td>
</tr>
<tr>
<td>700</td>
<td>80</td>
<td>Trans</td>
<td>1783</td>
<td>32.8</td>
<td>Broke</td>
</tr>
<tr>
<td>700</td>
<td>85</td>
<td>Trans</td>
<td>620</td>
<td>14.3</td>
<td>Broke</td>
</tr>
<tr>
<td>700</td>
<td>90</td>
<td>Trans</td>
<td>258</td>
<td>13.0</td>
<td>Broke</td>
</tr>
<tr>
<td>700</td>
<td>90</td>
<td>Long</td>
<td>743</td>
<td>13.0</td>
<td>Broke</td>
</tr>
<tr>
<td>700</td>
<td>95</td>
<td>Trans</td>
<td>14</td>
<td>9.6</td>
<td>Broke</td>
</tr>
<tr>
<td>800</td>
<td>40</td>
<td>Long</td>
<td>3037</td>
<td>23.2</td>
<td>Broke</td>
</tr>
<tr>
<td>800</td>
<td>45</td>
<td>Long</td>
<td>2005</td>
<td>26.6</td>
<td>Broke</td>
</tr>
<tr>
<td>850</td>
<td>40</td>
<td>Trans</td>
<td>407</td>
<td>23.5</td>
<td>Running</td>
</tr>
<tr>
<td>875</td>
<td>40</td>
<td>Trans</td>
<td>179</td>
<td>17.5</td>
<td>Broke</td>
</tr>
<tr>
<td>900</td>
<td>40</td>
<td>Trans</td>
<td>51</td>
<td>17.8</td>
<td>Broke</td>
</tr>
</tbody>
</table>
ATI 425™ Titanium

Erichsen Cup Test per DIN 50 101 (RT)

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Heat</th>
<th>Lot</th>
<th>Gauge</th>
<th>Draw Depth</th>
<th>mm</th>
<th>Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti425</td>
<td>797Y</td>
<td>1278929</td>
<td>0.050</td>
<td></td>
<td>4.3</td>
<td>0.1693</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
<td>0.1575</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.4</td>
<td>0.2126</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
<td>0.1693</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>0.1772</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>4.5</td>
<td>0.1772</td>
</tr>
<tr>
<td>Ti425</td>
<td>797Y</td>
<td>1267114</td>
<td>0.085</td>
<td></td>
<td>6.2</td>
<td>0.2441</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
<td>0.2283</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.4</td>
<td>0.2126</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
<td>0.2244</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>5.8</td>
<td>0.2274</td>
</tr>
<tr>
<td>Ti64</td>
<td>HOU63</td>
<td>N/A</td>
<td>0.063</td>
<td></td>
<td>4.2</td>
<td>0.1654</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
<td>0.1732</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
<td>0.1732</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td>0.1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>4.5</td>
<td>0.1772</td>
</tr>
</tbody>
</table>
ATI 425™ Titanium

Compressive Yield Data (Staveley)

![Graph showing compressive yield data for different types of ATI 425™ Titanium](image)

- **Yield Strength (ksi):**
 - Ti 6-4: 143, 1600
 - ATI 425™: 138, 135, 147, 140, 147, 140
 - ATI 425™: 135, 130
 - ATI 425™: 175, 155, 170
 - ATI 425™: 170, 150

- **Oxygen Content (ppm):**
 - Ti 6-4: 500
 - ATI 425™: 2400, 2900
 - ATI 425™: 2900
 - ATI 425™: 2900
 - ATI 425™: 2900
ATI 425™ Titanium
Creep Rupture Data ½” Plate Heat 797Y Westmoreland
ATI 425™ Titanium
Pin Bearing Test ASTM E238
Westmoreland
6 Lots, duplicate L & T coupons, 3 heats
Cold Rolled Sheet 6 gauges from 0.038” to 0.102”

<table>
<thead>
<tr>
<th>Pin Bearing</th>
<th>Yield (KSI)</th>
<th>Ultimate Yield (KSI)</th>
<th>Tensile Ultimate (KSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long AVG</td>
<td>225.8</td>
<td>276.5</td>
<td>122.6</td>
</tr>
<tr>
<td>Trans AVG</td>
<td>236.7</td>
<td>301.7</td>
<td>141.9</td>
</tr>
<tr>
<td>Long MIN</td>
<td>209.3</td>
<td>259.6</td>
<td>117.1</td>
</tr>
<tr>
<td>Trans MIN</td>
<td>220.9</td>
<td>290.6</td>
<td>130.4</td>
</tr>
<tr>
<td>Long MAX</td>
<td>241.4</td>
<td>291.1</td>
<td>135.4</td>
</tr>
<tr>
<td>Trans MAX</td>
<td>270.6</td>
<td>310.4</td>
<td>156.5</td>
</tr>
<tr>
<td>Long SDEV</td>
<td>11.0</td>
<td>8.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Trans SDEV</td>
<td>18.2</td>
<td>6.1</td>
<td>9.9</td>
</tr>
</tbody>
</table>

Copyright ©2006 ATI Wah Chang. All Rights Reserved
Specific Heat of Ti-4Al-2.5V-1.5Fe-O Alloy

Temperature, C

Specific Heat, J/kg-K
Thermal Expansion of Ti-4Al-2.5V-1.5Fe-O Alloy
Thermal Conductivity of Ti-4Al-2.5V-1.5Fe-O Alloy

- Temperature, °C
- Thermal Conductivity, W/m·°K