NEW HIGH PERFORMANCE TITANIUM FOR EXHAUST SYSTEMS

Further Study

SEPTEMBER 2005

TAKASHI YASHIKI
TITANIUM TECHNOLOGY DEPARTMENT
Titanium exhaust systems for motorbikes and cars

More than 1000 metric tons of Gr.2 are used for motorbike exhaust systems per year throughout the world.

Reason: Light weight, High class image, Characteristic titanium color

However, titanium exhaust systems have not been used for mass-produced cars.

One of the reasons: Car exhaust systems are exposed to higher temperatures than motorbike exhaust systems.

▶ These higher temperatures lead to a cracking problem in the exhaust systems
 - Insufficient high temperature oxidation resistance of Gr.2
 - Insufficient high temperature strength of Gr.2.

In motorbikes, the exhaust gas temperature also tends to increase.

Reason: Increase of demand of higher power engine, Use of catalyzer

▶ Cracking problem has also been considered recently.
KOBE STEEL’s new titanium alloy series for exhaust systems

Ti-1.5Al (Gr.37)
- The first mass-produced titanium alloy for exhaust systems in the world
- Mainly for motorbikes with higher exhaust gas temperatures
- Being mass-produced
- Registered in ASTM as Gr.37

Ti-1.2ASNEX
- Mainly for cars and motorbikes with much higher exhaust gas temperatures
- Superior performance to Ti-1.5Al
- Already produced mass-produced cold coils (6 metric tons)
Alloy design concepts

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Ti-1.5Al (Gr.37)</th>
<th>Ti-1.2ASNEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formability</td>
<td>The same level as Gr.2</td>
<td>The same level as Gr.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strength</th>
<th>Room temp.</th>
<th>High temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The same level as Gr.2</td>
<td>2 to 3 times higher than Gr.2</td>
</tr>
</tbody>
</table>

- **Good formability equivalent to Gr.2**
- **Weight reduction by reducing thickness**

<table>
<thead>
<tr>
<th>High temp. oxidation resistance</th>
<th>Applicable temp.</th>
<th>Potential applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gr.2 <600°C</td>
<td>600-700°C</td>
</tr>
<tr>
<td>Higher than Gr.2</td>
<td>Higher than Ti-1.5Al</td>
<td>Replacement of parts made of Gr.2</td>
</tr>
</tbody>
</table>
SUZUKI GSX-R1000

Photo: Courtesy of Suzuki Motor Corporation

Ti-1.5Al has already been used for mass-produced motorbikes.
Akrapovic in Slovenia is one of the most famous motorbike exhaust systems makers in the world.

They are the greatest user of Ti-1.5Al.

They use Ti-1.5Al for exhaust systems as a standard material instead of Gr.2.

More than 150 metric tons of Ti-1.5Al have been produced for their exhaust systems.
Evaluation results of Ti-1.5Al exhaust system after endurance test

Investigated cross section of Ti-1.5Al exhaust system after endurance test

Ti-1.5Al
- Depression of grain growth
- No surface cracks because of excellent oxidation resistance
- High-endurance is expected
- No cracks

Gr.2
- Remarkable grain growth
- Many surface cracks due to embrittlement by oxidation
- Breakage is possible in an early stage
- Cracks

KOBE STEEL, LTD Proprietary Information
Weight gain due to high temperature oxidation

High temperature oxidation resistance

- **Ti-1.2ASNEX > Ti-1.5Al > Gr.2**
- **Excellent!**

Weight gains of these materials are almost the same.

Weight gain of Gr.2 is twice as large as that of Ti-1.2ASNEX.

Only Ti-1.2ASNEX shows a dramatically small weight gain.
Cross sectional microstructures before and after exposure in air at 800°C for 100hrs

<table>
<thead>
<tr>
<th>Material</th>
<th>Before test</th>
<th>After 800°C, 100hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-1.5Al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-1.2ASNEX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarkable Thickness reduction and grain growth

- Large thickness reduction leads to a decrease of strength.
- Too much grain growth leads to low fatigue strength.

- Ti-1.2ASNEX is the most advantageous material in respect of less deterioration of strength and high fatigue strength.

- Level of thickness reduction and grain growth is not as much as with Gr.2

- Almost no thickness reduction and no grain growth
Embrittlement resistance

Welded tubes (O.D. 38.1x1.5t)

\rightarrow 800\textdegree C, 100hrs in air \rightarrow Flattening until cracking

Gr.2

Brittly cracked

Flat ratio (%) \rightarrow 13

Flat ratio $= (38.1 - d) / 38.1 \times 100$

Ti-1.5Al

Brittly cracked

23

800\textdegree C is too high for Ti-1.5Al.

Ti-1.2ASNEX

Not brittly cracked

21

Ti-1.2ASNEX has superior embrittlement resistance.
Ti-1.2ASNEX exhaust system made by Akrapovic

After endurance test

Several parts of exhaust systems made of Ti-1.2ASNEX

Ti-1.2ASNEX has sufficient formability for making exhaust systems.

Photo: Courtesy of Akrapovic Company
Ti-1.2ASNEX exhaust system made by Akrapovic after endurance test

Test conditions
- HONDA CRF450
- Tested by Jaka Moze
 - MX3 world motocross championship rider
- Total 30hrs, Max temperature approx. 800°C
 - Gr.2 exhaust systems surely crack in this condition.
Detailed appearance of Ti-1.2ASNEX exhaust system made by Akrapovic after endurance test.

Ti-1.2ASNEX exhaust system does not show any damages.
Inside of Ti-1.2ASNEX exhaust system made by Akrapovic after endurance test

Inside of exhaust system does not show any damages.
Microstructure of Ti-1.2ASNEX exhaust system made by Akrapovic after endurance test

Investigated cross section

Approx. 800°C

Cross sectional microstructure

Total elongations of tensile test pieces sampled from exhaust systems before and after endurance test

<table>
<thead>
<tr>
<th></th>
<th>Total elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before endurance test</td>
<td>37.5%</td>
</tr>
<tr>
<td>After endurance test</td>
<td>37.2%</td>
</tr>
</tbody>
</table>

Tested test piece sampled from exhaust system after endurance test

Inner surface of exhaust pipe

- Microstructure of exhaust system does not show any damages.
- Fine grains are maintained.

No decrease of total elongation ➔ No embrittlement

Long life of exhaust systems is expected by using Ti-1.2ASNEX.
Conclusions

Ti-1.5Al
(Gr.37)

- The first mass-produced titanium alloy for exhaust systems in the world
- Mainly for motorbikes with higher exhaust gas temperatures
- High performance and reliability are obtained without much additional cost.

Ti-1.2ASNEX

- Mainly for cars and motorbikes with higher exhaust gas temperatures
- Vastly improved high temp. oxidation resistance compared with Ti-1.5Al
- This alloy can be used for parts for which titanium cannot be used due to excessive temperatures.
KOBE STEEL, LTD.
IRON & STEEL SECTOR

Tokyo Head Office
5-9-12 Kita-Shinagawa Shinagawa-ku Tokyo 141-8688

Titanium Sales Dept. Overseas Section
Tel.03-5739-6203 (Dial-in) Fax. 03-5739-6932
Titanium Technology Dept.
Tel.03-5739-6211 (Dial-in) Fax. 03-5739-6932

Osaka Branch
Midosuji Mitsui Bldg. 4-1-3 Bingo-cho Chuo-ku Osaka 541-8536
Titanium Sales Dept.
Tel.06-6206-6567 (Dial-in) Fax. 06-6206-6208
Titanium Technology Dept.
Tel.06-6206-6565 (Dial-in) Fax. 06-6206-6208

Web Site: http://www.kobelco.co.jp/titan/
E-mail: titan@steel.kobelco.co.jp