Production and Characterization of Boron Doped Diamond Electrodes Grown on Titanium Applied to Textile Dye Degradation

Fernanda Lanzoni Migliorini
Neidenei Gomes Ferreira
INPE, SJ Campos, Brazil
INPE’s Location
National Institute for Space Research

SJ Campos – Aircraft Industry at EMBRAER

October 7-10, 2012 • Atlanta, Georgia, USA
Summary

• Introduction
• Objectives
• BDD/Ti Electrode: Production and Characterization
• Electrochemical Degradation of RO16 Dye
• Conclusions
Motivation

INPE’s Mission

National Institute for Climate Changes (CNPq/Fapesp)

Material development

Environmental monitoring

Diamond electrodes for waste water treatment
Introduction

Environmental Pollution

• Inappropriate use of environmental resources.
• Population increase.
• Industrial activities increase.
Introduction - Synthetic Organic Dyes

- Widely used in textile industry;
- High stability under sunlight;
- Resistant to microbiological attack;
- Carcinogenic, mutagenic and bactericide properties.

Environmental Impact

Removal of organic pollutant is a technological challenge
Introduction – Advanced Oxidation Process (AOP)

- High efficiency to decompose organic compounds
- Oxidation processes that produce hydroxyl radical (•OH) to transform the pollutants into carbon dioxide using reagents such as chlorine, hydrogen peroxide...
- Electrochemical Method (EAOP)
- (•OH) production from Electrochemical Clean reagent “the electron”
- The suitable anodic material???

N.G. Ferreira, Dr.
October 7-10, 2012 • Atlanta, Georgia, USA
Introduction – BDD/Ti Electrodes

BDD Properties
"Non-active anode"

- High O\textsubscript{2} overpotential to produce (•OH) (wide potential window);
- High electrochemical stability in corrosive electrolytes;
- Boron doping from 10^{17} to 10^{22} B cm-3.

Titanium Properties

- Relatively high conductivity;
- Attainable for large area;
- Low cost compared to Ta, Ni, and W;
- Good mechanical resistance to handling;
- Specially, its corrosion resistance due to the formation of a titanium oxide layer.

N.G. Ferreira, Dr.
October 7-10, 2012 • Atlanta, Georgia, USA
Introduction – Reactive Orange 16 Dye (RO16)

- Complex molecule;
- Textile azo-dye (-N=N-) widely used in industry;
- Biologically refractory and resistant to degradation.
Objectives

- BDD/Ti growth with high quality and adherence (challenge!!);
- BDD/Ti electrodes with different thickness and boron doping level;
- The application of BDD/Ti electrode on the RO16 dye electrochemical degradation;
- The use of analytical techniques to monitor the RO16 dye concentration during the process.
BDD/Ti Growth - HFCVD Technique

Reactants

\[\text{H}_2 + \text{CH}_4 \quad 99:1 \]

Activation

\[\text{H}_2 \xrightarrow{\Delta} 2\text{H} \cdot \\
\text{CH}_4 + \text{H} \cdot \rightarrow \text{CH}_4 \cdot +\text{CH}_2 \cdot +\text{CH}_3 \cdot +\text{H}_2 \]

Flow and Reaction

Diffusion

Substrate

N.G. Ferreira, Dr.

October 7-10, 2012 • Atlanta, Georgia, USA
BDD/Ti - SEM Characterization

Doping level
Estimated from Raman

<table>
<thead>
<tr>
<th>samples</th>
<th>Acceptor concentration (B cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3.0 x 1020</td>
</tr>
<tr>
<td>II</td>
<td>7.0 x 1020</td>
</tr>
<tr>
<td>III</td>
<td>1.0 x 1021</td>
</tr>
</tbody>
</table>
BDD/Ti - Raman Characterization

7 h

24 h
Electrochemical Degradation of the RO16 Dye

Electrolytes:
K₂SO₄+H₂SO₄ (0.1 mol L⁻¹) + RO16 (50 mg L⁻¹)
J = 25, 50, 75, 100, 150, e
200 mA cm⁻².
90 min; 20 °C; 350 mL
Electrochemical Degradation – BDD/Ti - 7 h - doping levels of I, II, and III

- 25 mA cm\(^{-2}\)
- 200 mA cm\(^{-2}\)

The best result
TOC Removal and HPLC—BDD/Ti of 7 h

200 mA cm$^{-2}$

HPLC at 254 nm $\pi - \pi^*$ transition of aromatic compounds
(1) Untreated solution—peaks from A to F;
(2) 10 min of treatment;
(3) 90 min of treatment: disappearance of the two main peaks related to the dye (D and F).

<table>
<thead>
<tr>
<th>Acceptor concentration (B.cm$^{-3}$)</th>
<th>% TOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>25 %</td>
</tr>
<tr>
<td>II</td>
<td>45 %</td>
</tr>
<tr>
<td>III</td>
<td>35 %</td>
</tr>
</tbody>
</table>

N.G. Ferreira, Dr.
UV-VIS comparative results – BDD/Ti samples type II

7 h - 200 mA cm$^{-2}$

24 h - 200 mA cm$^{-2}$
TOC Removal and HPLC – BDD/Ti sample type II – 24 h

HPLC at 254 nm $\pi - \pi^*$ transition of aromatic compounds
(1) Untreated solution – peaks from A to F;
(2) 10 min of treatment: peak F already disappeared;
(3) 90 min of treatment: complete disappearance of the two main peaks related to the dye (D and F).

<table>
<thead>
<tr>
<th>Deposition time (h)</th>
<th>% TOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>45 %</td>
</tr>
<tr>
<td>24</td>
<td>50 %</td>
</tr>
</tbody>
</table>
Conclusions

- The BDD/Ti electrodes with different thickness and doping levels without cracks or delaminations were obtained with success;

- The UV/VIS, TOC, and HPLC showed that all BDD/Ti electrodes were effective in the color and TOC removal of the RO16 dye.

- The enhancement of the dye degradation was observed with the optimized parameters: doping level as well as the diamond film thickness. (Why???)
Acknowledgements
Thank you !!!