The Evolution of Titanium Powerplant Surface Condenser Tubing…..
Forty Years & 600,000,000 Feet later

Presented To: 2011 ITA Conference Attendees

Principal Author: Dennis J. Schumerth
Director, Business Development
VALTIMET, Inc.
Date: October 4, 2011
DISCLAIMER

The information and data contained herein are derived from a variety of sources which Valtimet believes to be reliable. The use and application of the data contained & material within this presentation, either intended or implied, shall be the responsibility of the user and are not intended as claims, warranties, either expressed or implied or fitness of purpose.

Because it is not possible to anticipate specific uses and operating conditions, Valtimet urges you to consult with technical service personnel on your particular application.

The materials contained in this presentation shall not be distributed to any third party without the authorization of this author/Valtimet.
Martin Heinrich Klaproth named titanium after the first sons of Titan in Greek Myth.

Oceanus
Hyperion
Coeus
Cronus
Crius
Lapetus
Titanium
commercial - consumer - architecture

Boeing 777 - 787 + series
Airbus 300+ series
Golf clubs

consumer products
medical prosthetics
Bilbao Guggenheim museum
Titanium
military, armor, etc.

- F22 Raptor
- Stryker vehicle
- Submarine
- F35 JSF
- DDG 72
- M 113
- CVN 21
- Automotive
world metallic (*) titanium usage projections

- commercial aero: 38%
- industrial: 35%
- military: 12%
- consumer/Emerging: 9%
- other: 6%

(90% of all mined Ti = pigments)
Chemical Requirements Gr. 2... cp
(Composition, Weight Percent)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Carbon Max</th>
<th>Oxygen Max</th>
<th>Nitrogen Max</th>
<th>Hydrogen Max</th>
<th>Iron Max</th>
<th>Others Max</th>
<th>Others Max Total</th>
<th>Titanium</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.08</td>
<td>0.25</td>
<td>0.03</td>
<td>0.015</td>
<td>0.3</td>
<td>0.1</td>
<td>0.4</td>
<td>Remainder</td>
</tr>
</tbody>
</table>
40 years & 600 million ft later..
primary equipment applications for titanium tubing

shell & tube heat exchanger

powerplant surface condenser
Protect Assets

Corrosion ID & Abatement Drives Mat’l Selection
Miscellaneous Cooling Water Sources

Sea Water, Brackish Water, River Water, Cooling Lakes, etc.

Cooling Tower and/or Cooling Tower Blowdown

Produced Water

Gray Water, Plant Effluent or Municipal Wastewater

FGD or Other Plant Wastewater

Holy Water

Waste Streams – Demin, HRSG, RO

Steam/Condensate/Feedwater

Scotch & Water
corrosion

“Dirty Dozen”

activities that put equipment in harms way

conventional

- Chlorides
- Steam Droplet Erosion (Nuclear)
- Inlet Erosion/Corrosion
- Ammonia
- Suspended Solids Erosion (I.E. Sand)
- Calcium Carbonate
- MIC
- Manganese
- Gray Water (Effluent)
- Hydrogen Embrittlement
- Biocidal Growth Fouling

\(\text{FUTURE CIRH} \text{_0 SOURCES ???} \)
MIC
(MICROBIOLOGICAL INFLUENCED CORROSION)

or bacteria in a biofilm……..

- CAUSED BY SULPHURIC/SULPHUROUS PRODUCING BACTERIA COLONIES
- THE CHLORINE/HYPOCHLOROUS REACTS WITH MANGANESE PRODUCING HYDROCHLORIC ACID
- RESULT----------> REDUCTION OF THE CREVICE/PITTING & CORROSION RESISTANCE
“TYPICAL” GRAY, IMPAIRED OR TREATED EFFLUENT WATER ANALYSIS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EFFLUENT (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecal Coliform</td>
<td>13</td>
</tr>
<tr>
<td>BOD (Biochemical Oxygen Demand)</td>
<td>5.5</td>
</tr>
<tr>
<td>TSS (Total Suspended Solids)</td>
<td>5</td>
</tr>
<tr>
<td>COD (Chemical Oxygen Demand)</td>
<td>47.3</td>
</tr>
<tr>
<td>Nitrate+ite</td>
<td>21</td>
</tr>
<tr>
<td>Ammonia</td>
<td><0.1</td>
</tr>
<tr>
<td>TKN (Total Kjeldahl Nitrogen)</td>
<td>2.66</td>
</tr>
<tr>
<td>T Phosphorus</td>
<td>2.23</td>
</tr>
<tr>
<td>Potassium</td>
<td>10.8</td>
</tr>
</tbody>
</table>

Beware of sinkers & floaters!

APS
Palo Verde Units 1, 2 & 3
Make-up = 100% Treated Sewage Effluent
• Oxidizing Neutral & Inhibited Conditions
• Chlorides
• Inlet Erosion/Corrosion
• Pitting Crevice Corrosion (Temp limited)
• Cavitation
• Fatigue-Related Corrosion
• Flow-Assisted Corrosion (FAC)
• SCC
• Galvanic Attack
• MIC
• Manganese
• Gray Water
Titanium = \textit{corrosion immunity in the condenser system}

Ref: IMI (Imperial Metals) Peacock, et’ al’
new shop fabricated units
field rehab existing units
field rehab existing units

Mechanical Tube Expansion
2010 Tube Pull-Out Load Tests update

<table>
<thead>
<tr>
<th>Test Project</th>
<th>Tube Mat'l</th>
<th>Tube OD</th>
<th>Tube Wall (AVW)</th>
<th>TS Mat'l</th>
<th>Pull-Out Load Range (lbs)</th>
<th>Serrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santee Cooper/Winyah</td>
<td>Ti Gr 2</td>
<td>1.0”</td>
<td>0.028”</td>
<td>Mtz</td>
<td>1750</td>
<td>No</td>
</tr>
<tr>
<td>Santee Cooper/Winyah</td>
<td>Ti Gr 2</td>
<td>1.0”</td>
<td>0.028”</td>
<td>Mtz</td>
<td>2350 – 2500</td>
<td>Yes</td>
</tr>
<tr>
<td>Santee Cooper/Winyah</td>
<td>Ti Gr 2</td>
<td>1.0”</td>
<td>0.035”</td>
<td>Mtz</td>
<td>2050 – 2250</td>
<td>No</td>
</tr>
<tr>
<td>Santee Cooper/Winyah</td>
<td>Ti Gr 2</td>
<td>1.0”</td>
<td>0.035”</td>
<td>Mtz</td>
<td>3900 - 3950</td>
<td>Yes</td>
</tr>
<tr>
<td>SCS Yates</td>
<td>Ti Gr 2</td>
<td>0.875”</td>
<td>0.022”</td>
<td>Mtz</td>
<td>1200 – 1300</td>
<td>No</td>
</tr>
<tr>
<td>SCS Yates</td>
<td>Ti Gr 2</td>
<td>0.875”</td>
<td>0.022”</td>
<td>Mtz</td>
<td>2700</td>
<td>Yes</td>
</tr>
<tr>
<td>SCS Yates</td>
<td>Ti Gr 2</td>
<td>0.875”</td>
<td>0.035”</td>
<td>Mtz</td>
<td>1400 - 1550</td>
<td>No</td>
</tr>
<tr>
<td>SCS Yates</td>
<td>Ti Gr 2</td>
<td>0.875”</td>
<td>0.035”</td>
<td>Mtz</td>
<td>3400 - 3700</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Titanium condenser “thinning” tube gauge history
The Wrap Up….

A case for future optimism in titanium PowerGen
The Wrap Up….

A case for future optimism in titanium PowerGen

- Fossil Plant Upgrades

40 years & 600 million ft later.....
The Wrap Up….

A case for future optimism in titanium PowerGen

- Fossil Plant Upgrades
- New Nukes & Power Uprates

40 years & 600 million ft later…..
The Wrap Up....

A case for future optimism in titanium PowerGen

- Fossil Plant Upgrades
- New Nukes & Power Uprates
- Increasingly poor H2O Quality

40 years & 600 million ft later.....
The Wrap Up….

A case for future optimism in titanium PowerGen

- Fossil Plant Upgrades
- New Nukes & Power Uprates
- Increasingly poor H2O Quality
- World Capacity Additions
The Wrap Up….

A case for future optimism in titanium PowerGen

- Fossil Plant Upgrades
- New Nukes & Power Uprates
- Increasingly poor H2O Quality
- World Capacity Additions
- Ti pricing vs. competing material
The Wrap Up....

A case for future optimism in titanium PowerGen

- Fossil Plant Upgrades
- New Nukes & Power Uprates
- Increasingly poor H2O Quality
- World Capacity Additions
- Ti pricing vs. competing material
- Raw material availability

40 years & 600 million ft later.....
POWERFUL TUBING SOLUTIONS
FOR CORROSIVE ENVIRONMENTS

Always ask questions
Thank you for your attention