Thermally Assisted Machining of Titanium

The Performance of Titanium at the Speed of Aluminum

Cory Tallman, Lockheed Martin ADP
Robert Schaffarzyk, Ferra Engineering
Milan Brandt, RMIT University
Nazmul Alam, CSIRO
TAM is an Industry Team

Lockheed Martin
Cory Tallman
Metallic Direct Mfg.

Australia
NACC
John Wilshire

CSIRO
Nazmul Alam (PI)

RMIT University
Milan Brandt

Ferra Engineering
Mark Scherrer
Motivation

- The Buy to Fly ratio of Titanium is poor, typically 11:1
- The Buy to Fly ratio of Aluminum is worse
 - Aluminum machines an order of magnitude faster
- TAM intends to bring the cost of machining titanium closer to aluminum

Motivation

<table>
<thead>
<tr>
<th>Sponge</th>
<th>Plate</th>
<th>Machining</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50</td>
<td>$40</td>
<td>$30</td>
</tr>
</tbody>
</table>

Part (plate) Cost ($/lb) As a Function of Buy Weight

<table>
<thead>
<tr>
<th>Sponge</th>
<th>Forging</th>
<th>Machining</th>
</tr>
</thead>
<tbody>
<tr>
<td>$60</td>
<td>$50</td>
<td>$40</td>
</tr>
</tbody>
</table>

Part (forging) Cost ($/lb) As a Function of Buy Weight

- Machining of Titanium
 - 40% of the cost of part made from plate
 - 60% of the cost of a part made from a forging
Titanium 101

• Ti-6Al-4V is generally classified as “difficult to machine” because of its thermo-mechanical properties
• The primary challenge is overcoming short tool life
 – Prevents high cutting speeds
• Cutting speeds are an order of magnitude slower than aluminum
• Typical “Buy to Fly” of Titanium is poor
 – Approximately 90% of material purchased is removed during machining
• Machining of Titanium can be 40 to 50% of the cost of a titanium part for an air vehicle
• Goal to reduce cost by improving tool life and maximize Material Removal Rate (MRR)
Poor Machinability

- Titanium has low thermal conductivity
 - Impedes heat-transfer out of the cutting zone
 - Creates high cutting zone temperatures
 - Titanium shows high chemical affinity towards the Cobalt binders that are found in most cutting tool materials
 - The interface between Titanium chips and cutting tools is usually quite small, which results in high cutting-zone stresses
 - There is a strong tendency for Titanium chips to pressure-weld to cutting tools.
Why Lasers?

- Laser
- High Travel Speed + High Removal Rate + Increased Tool Life = Machining Cost Reduction

Reduces the Roughing Time by 80%
Reduces the Cutting Force by 40%
Extends the Tool Life 3X*

* Tool optimization is under way
Why it Works

- The strength of all metals decreases with temperature
- Reduces the force required to remove material
- Reduction in force allows
 - Greater tool life
 - Faster speeds
 - Smaller investment
Milled Sample with Laser Beam

- Laser beam
- Cut depth
- HAZ
- Microstructure examined
Cross Section of Laser Heated Area

4 kW @ 1.2 m/min
5 mm above focal plane

Low magnification

High magnification
Hardness Vs Depth

Hardness, HV0.1

Depth, mm

Surface
Cross Section of Milled Sample – No Laser

- Depth of cut: 1.5 mm
- Feed speed: 1 m/min
- Spindle: 3571 rpm
- Tool diameter: 25 mm
- Tool engage: 70%

Low magnification

High magnification
Cross Section of Milled Sample –
with Laser

- Depth of cut: 1.5 mm
- Feed speed: 1 m/min
- Spindle: 3571 rpm
- Tool diameter: 25 mm
- Tool engage: 70%

Laser: 1.5 kW
Tool Wear

Conventional

Volume Removed = 3.6 cm³
Cutting Speed = 200 m/min

TAM

Volume Removed = 8.4 cm³
Cutting Speed = 200 m/min

- Optimizing tools were not an objective of the pilot program
- Tools chosen for the pilot were COTS
- Trend is favorable for harder tools, similar to what is on for Al
Quantifiable Benefits #1

The target is to reduce the cycle time in roughing machining operations.

TAM achieved $6 \times \text{increase in MRR}$:
- $5 \times$ increase in cutting & spindle speed
- 6 times increase in machining feed rate
- 80% cycle time reduction for roughing operations
- $2.5 \times$ tool life increase compared to standard titanium machining using cutting inserts of the same type

The more raw material that needs to be removed - The greater the time savings
Quantifiable Benefits #2

85% Reduction in Cycle Time

<table>
<thead>
<tr>
<th>Example Component</th>
<th>Unit</th>
<th>Conventional</th>
<th>TAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of raw material</td>
<td>cm³ / (in³)</td>
<td>10,407 (635)</td>
<td></td>
</tr>
<tr>
<td>Volume of finish component</td>
<td>cm³ / (in³)</td>
<td>541 (33)</td>
<td></td>
</tr>
<tr>
<td>Material to remove</td>
<td>cm³ / (in³)</td>
<td>9,866 (602)</td>
<td></td>
</tr>
</tbody>
</table>

Roughing cycle time

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Roughing</td>
<td></td>
<td>822</td>
</tr>
<tr>
<td>Roughing cycle time</td>
<td></td>
<td>130</td>
</tr>
</tbody>
</table>
Quantifiable Benefits In General

Machining time comparison of conventional machining and LMcut machining

- Minutes cycle time for conventional machining
- Minutes cycle time for LMCut machining

<table>
<thead>
<tr>
<th>Volume (cm³)</th>
<th>100 cm³</th>
<th>250 cm³</th>
<th>400 cm³</th>
<th>550 cm³</th>
<th>700 cm³</th>
<th>850 cm³</th>
<th>1000 cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>21</td>
<td>33</td>
<td>46</td>
<td>58</td>
<td>71</td>
<td>83</td>
</tr>
<tr>
<td>(in³)</td>
<td>6.1</td>
<td>15.2</td>
<td>24.4</td>
<td>33.5</td>
<td>42</td>
<td>51.8</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>
Schematic Illustration of CNC Cell

1. Laser head carrier
2. Ti bar to be milled
3. Cutting tool
4. Laser head
Laser Concept
Progress Has Been Fast

- By 2011 TAM was shown to be capable of increasing MRR five times for titanium plate materials
- The laser was building too much heat in the workpiece for thicker sections
- We had a solution for equipment which utilized a rotating table (i.e. the laser was in a fixed position relative to the spindle)
- In 2012 we began to scale the solution to include a dynamic position of the laser relative to the spindle

- A solution was configured for a larger 5 axis system without the necessity of a rotating table
- A higher power diode laser was acquired which enabled closed loop control for maintaining the temperature in the workpiece
- In August, the laser system was shipped to Ferra Engineering for factory trials
- By 2013 we will be in a position to license the IP to an equipment manufacturer
Principal Advantages

• By heating the material, the force required is less
• Reduces wear on the tool
• Utilize “smaller” machine (i.e. for aluminum)
• Can be adapted to existing machines
• No re-qualification required
• No liquid coolant required
Acknowledgements

• Ram Balar – Lockheed Martin ADP, F-35 I&D
• John Barnes – CSIRO
• Mark Scherrer – Ferra Engineering
• Milan Brandt-RMIT University
• John Wilshire – Australia JSF Industry Team