Economic tooling for high performance machining of Ti alloys

Increased material removal rate and production efficiency

Ed Tarney
Erasteel
Economic tooling for high performance machining of Ti alloys

High speed steel end mills instead of solid carbide tools for initial rough machining

Ed Tarney
Erasteel
Background

- Aubert & Duval, Erasteel = divisions of Eramet
Background

• Aubert & Duval, Erasteel = divisions of Eramet
 – Aubert & Duval produces Ti forgings for airframe components
Background

• Aubert & Duval, Erasteel = divisions of Eramet
 – Erasteel produces PM high speed steel for cutting tools

ROUGH MILLING OF INCONEL 718 WITH ASP 2052

Operation: Rough milling Inconel 718

Problem: Short tool life of milling cutters with TiN coated carbide inserts

Solution: Solid end mill ASP 2052 + TiCN

Cutting conditions:
Carbide + TiN: vc = 20 m/min, fz = 0.08 mm
ASP 2052 + TiCN: vc = 5 m/min, fz = 0.16 mm

Benefit: Longer tool life: 2.1 m for ASP 2052 instead of 0.45 m for carbide (eliminate edge chipping). Similar metal removal rate as carbide
Economic tooling for high performance machining of Ti alloys

Background

• Aubert & Duval, Erasteel = divisions of Eramet
 – Aubert & Duval uses cutting tools to machine Ti forgings
 – Joint project to investigate potential for improved machining efficiency and cost benefits using HSS tools instead of carbide
Background

• Main interest = productivity improvements
 – A&D has machined forgings with carbide end-mills
 • Performance is reliable
 • Decreased machining time is goal
 – Erasteel promotes toughness of ASP high speed steels
 • Desired comparison against carbide tools
Project

• Compare performance of carbide versus HSS mills
 – Toughness of high speed steel better than carbide
 • Less chipping or breakage in difficult cutting conditions
 • Able to withstand heavier chip loads
 – Abrasion resistance of carbide higher than HSS
 • Longer edge wear
 • Improved by coatings
 – Temper resistance of carbide better than HSS
 • Higher cutting speeds permissible
Project

- "PM HSS" grades permit higher alloy content than conventional HSS (e.g. M7, M42)
 - Improved toughness despite high alloy content
 - Result of PM manufacturing
 - Freedom from carbide segregation
 - Improved abrasion resistance
 - Higher alloy content
 - Greater volume of carbides
 - Higher attainable hardness
 - Improved temper resistance
 - Higher alloy content
Project

• Select highest alloy PM grade
 – ASP 2060
 • Highest HRC
 • Highest abrasion resistance
 • Highest temper resistance
 – Closest HSS properties to carbide
Project

- 3 end mills:
 - ASP 2060 end mill
 Desgranges
 - End-mill with indexable carbide inserts
 Sandvik
 - ASP 2060 end mill
 Leclerc
Economic tooling for high performance machining of Ti alloys

Project

• Sandvik cutter with indexable inserts

 – 3 cutting edges
 – End-mill with indexable carbide inserts
 – 3 helical rows of 7 inserts
 – Each insert of the front set is turned twice
 – All other insets are turned 4 times
 – Turning of inserts every 40 to 45 minutes
Project

- Desgrange ASP 2060 crescut end mill
 - 6-flute end-mills
 - 54 mm diameter
 - Crescut geometry
 - 67.5 HRC
 - Alcrona coating (Al Cr N)
Project

• Leclerc ASP 2060 roughing end mill

 – 6-flute end-mills
 – 50 mm diameter
 – Normal roughing geometry
 – 67 HRC
 – Alcrona coating (Al Cr N)
Project

• A350 airframes
 – Ti – 6Al - 4V
 – Site : Salvaire (France), machining subcontractor of A&D

• A350 landing gear parts
 – Ti – 10V – 2Fe – 3Al
 – Site : Aubert et Duval Les Ancizes
 – Milled before heat treat
Results

• Desgrange crescut mill results (Ti-10-2-3):
 – Chip removal rate is higher than carbide data: min + 25%
 ➔ it is even possible to increase feed speed or depth of cut
 – None of the 3 end-mill was used up to the limit wear
 • With first end-mill, chocks, vibration, bad evacuation of chips, end-mill N°1 has turned by 15° inside the chuck
 • Results averaged for 2nd & 3rd cutters
Results

- Leclerc roughing mill results (Ti-6-4):
 - Chip removal rate can be 2 or 3 times higher than carbide data
 - None of the 3 end-mill was used up to the wear life limit
 - Chip removal problem (lubrication? High removal rate?)
 - Achieved Ra = 7,0 to 7,7 while Ra < 6,3 is expected
Results

• Positive results:
 – After 1 hour of milling, cutting edges of N°2 end-mill are still in good condition (light flank wear, very tiny built-up edge)
 – End-mill N° 2 was ready to mill 2 hours when we decided to stop after 1 hour.
 – Chip removal rate is equivalent or higher than carbide data
 ➔ it is possible to increase feed speed or depth of cut
 – None of the 3 end-mill was used up to the limit wear
 • First end-mill stopped because of bad chip disposal (cutting edges damaged)
 • Second end-mill still in good condition after 1 hour of milling
 • Third end-mill not used
Results

• Further work:
 – Modified geometries to optimize chip removal
 • Chip breakers on crescut mill
 – Alternate PM grades to compare substrate changes
 – Optimize cutting speeds
 – Eventual tool life comparison
Conclusions

- Tests conducted on A350 frame component in Ti-6-4 and landing gear component in Ti-10-2-3
- Testing results:
 - Chip removal rate is higher than carbide data: min + 25%
 - Chip removal rate can be higher than carbide data
 - None of the 3 end-mill was used up to the limit wear
Comments

- Test conducted specifically to improve machining efficiency, not tool life, but initial tests suggest tool life will still be acceptable

- Conclusions show PM HSS tool material can provide
 - High material removal rates,
 - Improved machining times,
 - Acceptable wear life

- PM high speed steels offer alternative between traditional conventional M42 tools and carbide tools
 - Cannot match edge wear and cutting speed capability of carbide
 - Longer edge life, higher cutting speeds than M42 HSS
 - Greater chipping resistance than carbide, more robust for difficult cutting environment