Linear Friction Welding: bottom line

Automated, repeatable, fast, **dependable** welds
Near-net-shape additive manufacturing of **forged** parts
Enables advanced structures through **material tailoring**
Opens to **new design freedoms**, and reduces part count
Helps to control material input and product **time-to-market**
World Centre for Materials Joining

- **TWI**
 - Non-governmental
 - Not for profit distributing
 - Independent
 - Impartial

- **TWI’s mission:**
 To be the best at what we do*
 * To deliver world class services in joining materials, engineering and allied technologies to meet the needs of a global membership and its associated community

- **Dedicated to Materials Joining**
 - Over $100m R&D per year
 - Over 850 staff in 4 UK centres
 - Over 700 Industrial Members
 - 60 years track record
TWI - Friction and Forge Processes

- Based in Cambridge
- 16 Engineers and Technicians
- 53 years of R&D in Friction Processes
 - One of the first in Friction Welding
 - Pioneered Linear Friction Welding
 - Invented Friction Stir Welding
Linear Friction Welding

High quality, automated, quick, self regulated, self cleaning, repeatable welding process

Linear Friction Stir Welding

Copyright © TWI Ltd 2015
- Fast: typically under 30s cycle time
- Accurate: positioning under 0.10mm and reproducible: under 0.25mm
LFW: High Quality Weld in Ti Alloys

- Preserves a hot forged microstructure
- Thin heat affected zone
- Recrystallised to fine grained equiaxed microstructure at weld centre
- Can be post weld heat treated for performance
- Near-parent tensile and fatigue properties can be achieved

↑ Ti-6Al-4V ↓
LFW: High Quality Weld in Ti Alloys

- Preserves a hot forged microstructure
- Thin heat affected zone
- Recrystallised to fine grained equiaxed microstructure at weld centre
- Can be post weld heat treated for performance
- Near-parent tensile and fatigue properties can be achieved

Both components fractured in the parent metal
LFW current products: Blisks

- Critical aero engine component: compressor rotor
- Mature production: fighters engines
 - Power to Weight ratio
 - Performance
- Uptake: large civil engines
- Fuel saving
- Environmental regulations
- In-house knowledge and qualification
Friction and Forge Processes activities

- Understand
- Explore
- Demonstrate
- Transfer
- Implement
- Qualify
Friction and Forge Processes activities

Understand

LFW
Analysis of LFW cycles: current work

- Independent monitoring of LFW cycles
 - Helps the LFW Process Engineer in making his/her decision
 - Offer evidence to support the welding operation
 - Unobtrusive addition of sensors
 - High sampling rate
 - Open, adaptable tools
 - Individual weld cycles (QC)
 - Series repeatability
 - Project should be transferable to other machines in the future
Anthony McAndrew
Contaminant Removal in Ti6Al4V
 ▪ 1st publication: 2013
 ▪ 2nd publication: 2014
 ▪ Thesis: 2015

Lucie Lee
Novel Industrial Applications
 ▪ 1st publication: 2016
 ▪ 2nd publication: 2017
 ▪ Thesis: 2018
Friction and Forge Processes activities

LFW

Understand

Explore

Demonstrate
Demonstrating capabilities of LFW

- Core Research
- Smart manufacture
- Like for like performance
- New design freedoms