Titanium sponge developments in India

Defence Metallurgical Research Laboratory
Hyderabad, India

ITA 2014, 24 September 2014, Chicago IL, USA
THE INDIAN TITANIUM SCENE

Agencies engaged in the ‘Titanium Ore to Product Cycle’

TITANIUM SPONGE
KMML, 500 tpy

TITANIUM MINERAL WEALTH
ILMENITE: 520 million tons
RUTILE: 30 million tons

TITANIUM DIOXIDE
PIGMENT
KMML: 60000 tpy
TTPL: 25000 tpy
Kolmac: 5000 tpy
Kilburn: 5000 tpy

TITANIUM ALLOY R&D
DMRL, VSSC, BARC, BHU, NCML, IISC, NAL, IIT (M)

INGOT MELTING & MILL PRODUCTS
MIDHANI: 200-250 tpy

TITANIUM FABRICATION
TEAM, TITAN, TITANOR, EXOFAB, ZIRCOTAN, L&T, ALFA-LAVAL, BHPV

ILMENITE
IREL: 600000 tpy
KMML: 200000 tpy †
TOTAL: 800000 tpy

RUTILE
IREL: 19,000 tpy
KMML: 22,000 tpy
TOTAL: 41,000 tpy

SYNTHETIC RUTILE
IREL: 100000 tpy
DCW: 50000 tpy
KMML: 100000 tpy †
CMML: 50000 tpy

Agencies engaged in the ‘Titanium Ore to Product Cycle’
Titanium consumption in India

- Annual consumption expected to be doubled in the coming 5 years
- Higher costs, infrastructural limitations, lack of awareness on long term benefits of Ti in down the line limiting the consumption
DMRL technology (Kroll process) for titanium sponge production – from TiCl₄ purification to preparation of finished sponge lots of 1.75 MT

Technology demonstrated and proven to produce premium grade sponge in industrial scale batches
Technology transfer to KMML

A small commercial facility for titanium sponge set up at KMML, Kerala, India with DMRL technology and funding support from Dep. of Space

KMML sponge plant:
Capacity: 500 MT per year
(expandable to 1000 MT per year)
- Commissioned in June 2012
- TiCl4 source: KMML oxide plant
- Magnesium: imported
- 5 Reduction stations
- 5 Vacuum distillation stations
- Sponge cake ejection
- Sponge crushing, cutting & blending to prepare homogeneous finished lots in a separate housing
- Regular production taking place in 3-3.5 MT batches
Some engineering improvements in the technology at KMML sponge plant

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Technical /Engineering improvement</th>
<th>Overall result/benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Process control through Thyristor based temperature controllers/re-designed air duct work/varying speed air blowers/zone wise energy recorders</td>
<td>Significant energy savings/smooth process operations</td>
</tr>
<tr>
<td>2.</td>
<td>Fine tuned operating conditions of TiCl₄ purification, Reactor pressure control, MgCl₂ tapping, vacuum distillation operations</td>
<td>Consistent batch operations, enhanced performance, reduction in overall cycle time, improved physical characteristics of sponge, improved yield</td>
</tr>
<tr>
<td>3.</td>
<td>MgCl₂ ladle for regular collection of hot chloride from a battery of reactors and teeming of salt at a selected working place</td>
<td>Ease of process operations, improved working environment, ease of solid waste disposal, scope for supply of hot salt to the proposed MgCl₂ recycling cell</td>
</tr>
<tr>
<td>4.</td>
<td>New infrastructural facilities for sponge handling (de-humidified space, belt conveyor system etc)</td>
<td>Improved sponge yield and implementation of quality assurance practice</td>
</tr>
</tbody>
</table>
Implementation of sponge quality assurance practice

Sampling procedure for evaluation of quality of a finished Sponge Lot

1750 kg Lot
Blending
Five way Chute
Rotary Sampler

20 kg

10 kg
10 kg

5 kg
5 kg

2.5 kg
2.5 kg
2.5 kg
2.5 kg

1.25 kg
1.25 kg

Coring & Quartering
Button Melting for analysis & Hardness Testing

Coring & Quartering
Compact & drilling for Mg & Cb analysis

Primary Sample
40 increments 500 gm/increment

Secondary Sample
Typical analysis of a finished lot sample

<table>
<thead>
<tr>
<th>Element</th>
<th>Content (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (Fe)</td>
<td>0.023</td>
</tr>
<tr>
<td>Oxygen (O)</td>
<td>0.0375</td>
</tr>
<tr>
<td>Silicon (Si)</td>
<td>not detected</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>0.0063</td>
</tr>
<tr>
<td>Carbon (C)</td>
<td>0.0033</td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td>0.0243</td>
</tr>
<tr>
<td>Nitrogen (N)</td>
<td>< 0.0020</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>0.0122</td>
</tr>
<tr>
<td>Chromium (Cr)</td>
<td>0.0012</td>
</tr>
<tr>
<td>Hydrogen (H)</td>
<td>0.0019</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.0071</td>
</tr>
<tr>
<td>Tin (Sn)</td>
<td>not detected</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>0.0009</td>
</tr>
<tr>
<td>Ti (by difference)</td>
<td>99.901</td>
</tr>
<tr>
<td>Hardness (BHN)</td>
<td>78</td>
</tr>
<tr>
<td>Year</td>
<td>Activity</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>1982-93</td>
<td>Establishment of Magnesium pilot plant facilities – Development of Monopolar cell technology in 30 kA cells (150 kg/day)</td>
</tr>
<tr>
<td>1994-2000</td>
<td>Setting up of multipolar cells and experimental operations in 7 kA with solid feed & 4.8 kA cells with molten salt feed</td>
</tr>
<tr>
<td>2003-2006</td>
<td>Setting up & operation of 8 kA multipolar cells with molten MgCl₂ feed – Study of cell performance</td>
</tr>
<tr>
<td>2012</td>
<td>Sanction of funds for setting up of another Magnesium Pilot Plant for resolving technical issues before its implementation on industrial scale</td>
</tr>
</tbody>
</table>
Flow sheet for MgCl₂ recycling developed at DMRL

Technical issues to be resolved:
- Mechanization of magnesium metal ladling and improvement systems for chlorine recovery
- Al pick up by metal from refractory
- Improvement in current efficiency and metal yield
- DMRL to set up another pilot plant to work on above

Magnesium metal produced in the DMRL pilot plant
DMRL titanium sponge technology for large capacity plants

M/s
Steel Authority of India Limited (SAIL)
Tata Steel
Indian Rare Earths Limited
Vedanta Industries

expressed interest in DMRL technology for setting up of large capacity titanium sponge plants

-SAIL also explored tie-up with TIMET for such a venture

-DMRL technology is under evaluation for its suitability for a titanium sponge plant of 5000 / 10000 MT per year
Prospects for titanium sponge in India

- Excellent mineral reserves
- Established mineral processing industry
- Scope for increased consumption of titanium due to availability of sponge locally (without importing)
- Projections indicate increased demand in a large number of applications
Acknowledgements

Thanks to International Titanium Association (ITA) for giving this opportunity