Titanium Fires Simplified

TITANIUM 2014
September 21-24, Chicago USA

By Robert G. Lee
Chair ITA Safety and Compliance Committee
DISCLAIMER

- THE SAFETY RECOMMENDATIONS PROVIDED IN THIS PRESENTATION ARE NOT INTENDED TO REPLACE APPLICABLE LAWS AND REGULATIONS ALREADY IN EFFECT AND THAT ARE CURRENTLY BEING ENFORCED BY FEDERAL, STATE, AND OTHER RULEMAKING AUTHORITIES BUT SHOULD BE READ AS GUIDELINES TO MEMBERS OF THE INTERNATIONAL TITANIUM ASSOCIATION (ITA) FOR THE REASONABLE AND EFFECTIVE IMPLEMENTATION OF SAFETY STANDARDS ALREADY IN EXISTENCE. ITA HAS NOT ENDEAVORED TO PROMULGATE SAFETY STANDARDS, NOR DOES IT HAVE THE POWER TO ENFORCE AND ENSURE INDUSTRY WIDE COMPLIANCE WITH THE RECOMMENDATIONS CONTAINED HEREIN; THEREFORE, IN NO EVENT WILL ITA BE HELD LIABLE FOR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO DAMAGES TO PERSON OR PROPERTY FROM ANY USE OF THE FOLLOWING ITA PRESENTATION OF SAFETY RECOMMENDATIONS. THE FOLLOWING ITA PRESENTATION SHOULD NOT BE RELIED UPON FOR ANY PERSONAL OR SAFETY DECISIONS, AND THE USER IS ADVISED TO CONSULT WITH THE APPROPRIATE SAFETY PROFESSIONAL AND/OR GOVERNMENTAL BODY FOR SPECIFIC ADVICE REGARDING THE APPLICABILITY, IMPLEMENTATION, AND ENFORCEMENT OF ANY RECOMMENDATION CONTAINED HEREIN AS TO ANY PARTICULAR SITUATION.

The Author is not undertaking to render professional or other services for or on behalf ITA or any person or entity. Robert G. Lee and Accushape Inc. “Author” disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of or reliance on this document. The Author makes no guaranty or warranty as to the accuracy or completeness of any information contained herein.
Facility and Transportation

- Regulations are voluminous and complex

- ASTM E 1226 Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts.
- 49 CFR (Code of Federal Regulation, Transportation)
- ERG (Emergency Response Guide)
- EPA (Environmental Protection Agency)
- IATA Dangerous Goods Regulations
- IBC (International Building Code), as adopted by local jurisdiction
- IFC (International Fire Code) as adopted by local jurisdiction
- ICAO International Civil Aviation Organization
- IMDG (International Marine Dangerous Goods)
- NEC (National Electrical Code)
- NFPA77 Recommended Practice on Static Electricity
- NFPA 484 Standard for Combustible Metals
- NFPA 499 Recommended Practice for the Classification of Combustible Dusts and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas
- NFPA 654 Standard for the Prevention of Fire and Dusty Explosions from the Manufacturing, Processing, and Handling of Combustible Particulate Solids.
- OSHA
- TSCA (Toxic substances Control Act)
- Specific modes of transportation and specific carriers also have special regulations, packaging and handling requirements that must be identified and complied with.
TITANIUM FINES ARE NOT CREATED EQUAL

• UNDERSTAND HOW YOUR MATERIALS REACT AND HOW YOUR PROCESSES CAN CREATE IGNITIONS CONDITIONS.
 – At least 10 different kinds of powder and fines
 – At least 10 different kinds of processing methods
 – About a dozen factors that influence flammability, ignition, dust dispersion
 – Test and ignite a small quantity of your material at various process steps
 – Require employees to observe how the material burns
DUST AND TUBES

• BEWARE OF CREATING DUST AND COLLECTING IN TUBES (ROCKETS)

– If your process is creating dust-stop the process
– Implement engineering controls
– Be extra cautious with collection in “explosion proof systems”. Yes they may be explosion resistant, but like “bullet proof vests’ no such things exist in the real world.
– Ignition can occur when dust moves through the air.
– HVAC are dust collectors
– Set up monitoring stations in strategic process areas to collect and monitor dust quantities and their ignition potential
– Careful monitoring can drive maintenance and housekeeping
STATIC ELECTRICITY

• Not well understood not adequately tested

 – The likely culprit of “spontaneous” ignitions even when the material does not meet the spontaneous combustion test
 – Get a static testing meter and test all stages of processing and material accumulation including the time for dissipation.
 – Avoid using materials that create static charges
 – Ground equipment
 – Avoid contact of powder with Aluminum and iron, especially damp and wet forms.
 – Yes some forms of very fine, low oxygen powders will spontaneously ignite, but most will not without the addition of an energy source.
STORAGE AND ACCUMULATIONS

Probably the most important step to avoid a dangerous situation

Cost should not be the driver for processing methods

Avoid moisture and high humidity

Process and store in the smallest quantities you can

Store only in covered non static non flammable containers

Segregate and separate quantities stored with space of physical barriers

SEGRAGATION WILL STOP A SMALL FIRE AND PROVIDE YOU THE CHANCE TO KEEP IT FROM BECOMING A LARGE FIRE YOU CANNOT EXTINGUISH
BUILDING AND FIRES

• AVOID THE EXPLOSION AND SPECTACULAR VIDEOS

• No water-No Nitrogen
 – Notify your local fire department, what you have and no water can be used
 – No sprinklers where titanium is stored or processed
 – Avoid combustible materials in the areas
 – Processing and storage areas must be built with none combustible materials
 – Avoid extinguishing methods that spread material

LET IT BURN-
YOU CANNOT PUT OUT A LARGE TITANIUM FIRE
A SMALL FIRE WILL NOT CAUSE MUCH DAMAGE
TRANSPORTATION

• Most titanium fines are a flammable solid and cannot be transported by normal packing
 – You the shipper are responsible to determine if the material is a flammable hazard
 – You must be trained and have recurring training
 – The penalties are tough
 • 2013 59 passengers fined-3 over $25,000
 • 2013 67 shippers fined 7 over $50,000 up to $72,000
 • 13 shippers in 2009 to 2012 over $100,000 one $620,000