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ABSTRACT. 
Two. different methods,. thennodynamic calculation and artificial neural networks modelling, have 
been used to model the beta transus temperature of titanium alloys. Results from either method agree 
.with experime11tal results very well. The well-trained neural network model has also. been successfully 

· used. to predict the beta transus temperature of new alloys which showed good perfonnance. Influences 
of alloy elements. Al and Mo on the beta, transustemperature i_n Ti-Al and Ti~Mo binary system have 
also been modelled; the results are again in good agreement with experimental data. In addition, the 
appropriate concentration range of both methods for each element has been listed. 
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L INTRODUCTION 

Materials production technology .requires a detailed knowledge of process parameters and the effects of these 
parameters on product properties. Essentially there are two different ways of predicting ¢.ese effects. Firstly 
one can develop a mqdel which describes physical _relations between parameters and product properties, and 
verify ¢.is model using experiments. Alternatively, a model can be created by applying statistical techniques to 
existing production data. The advantage of. the fonner method is . that it is associated with a basic 
und~rstanding of the mechanism of the phenomenon. ~owever, an explicit physical model. of the production 
process r~quires knowledge.of all relations between production parameters, microstructure and final properties 
'.'Vpich ar~ usually difficult to obtain. In this aspect, the advantage of the latter approach is that it can cope with 
i11:complete dataset without prior knowledge o( the physical background of the proc~sses occurring. However, 
some background knowledge might be needed to interpret the statistical or predicted.results. . :, 
In the current work, both approaches were used to model the alpha to beta transfonnation in titanium alloys. In 
recent years, phase transfonnation modelling of titanium alloys has become much attractive as a means toward 
full control of the microstructure through processing so as to-more thoroughly exploit the superior combined 
properties of these remarkable materials. Because of the potential .of strengthening by the control of 
microstructure, knowledge of fundame11tal properties such as the P-trans~s temperature and volume fraction of 
ex. or p as a function of temperature is a critical factor in alloy design and selection of processing parameters. 
Modelling of beta transus temperature is· a suitable starting point as it has relatively little relation with 
production parameters, which makes the problem much simpler, compared with modelling of mechanical 
properties such as tensile strength and hardness: and corrosion resistance. · · 
Thennodynamic theories of phase transfonnatiori in materials have · been well developed and computer 
packages have been produced which can be used to calculate the equilibrium status at different conditions, such 
as MTDATA and Thenno-Calc [l]. The first method in this paper is to use the Thenno-Calc (TC} package, 
which was developed at the Royal Institute of Technology ifl . Sweden, particularly for thennodynamic 
calculation of materials based on various databases. The database specially for calculation of titanium alloys is 
the Ti-Data database assembled by ThennoTech Ltd. in the United Kingdom [2]. 
The second method is to use artificial neural networks (ANNs) to construct a quantitative black-box model for 
titanium alloys, which connects input data to output data without making any prior assumptions on the type of 
functional dependence. Usually, the input data can be processing conditions- and the output data the 
mechanical or physical properties of the final product. In the present study, the inputs and output are much 
simpler which are the chemical composition of each alloy element and the beta transus temperature of an alloy, 
respectively. Such method . has · been successfully used to mod.el the austenite formation and mechanical 
properties of steels [3-7). More infonnation about these two methods is detailed in the following sections. 
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2. THERMODYNAMIC CALCULATION USING THERMO-CALC 

2.1 METHOD 

A traditional way of materials research is to construct a physical model based on a theoretical concept which is·. 
then verified with experimental data. Continuing improvement of the model is required to increase its level of 
generalisation as new phenomena are discovered. Ti-based alloys, although in wide application only since 
l 940's, were one of the first material types to which thermodynamic calculations such as phase diagram were: 
applied [8,9]. Improvements in modelling and the increase in computing power have since enabled very 
accurate predictions to be made for phase equilibria in industrial multicomponent alloys. Saunders and 
Chandrasekaran showed that in a Ti-6Al-4Valloy with 0, C and N included, the effect ofO on the ~-transus 
could be accurately predicted [8]. 
Based on various thermodynamic databanks available, Thermo-Cale has been developed which is the program 
used in the present work: The main method of this package is a Gibbs free energy minimisation process, and it 
can handle single equilibrium, property diagrams or phase diagrams with up to 20 elements. In this paper, 
modelling work of titanium alloys using Thermo-Cale has been carried out, using Ti-Data, a database for Ti­
based alloys, which takes 15 elements (Ti-Al-Cr-Fe-Mo-Nb-Si-Sn-Ta-V-Zr-C-0-N-B) into account. Detailed 
information about the Thermo-Cale package and Ti-Data database can be referred to Refs. [10] ·and [2], 
respectively. · · 

2.2 RESULTS 

Thermodynamic calculation of the beta transus temperatures of 50 kinds of titanium alloys has been 
carried out in the present work. The chemical composition and experimental beta transus data of these alloys 
are obtained from references [ 11-15]. The maximum values for O and Fe in alloy specification were used in the 
calculations. The average composition was adopted for all the other elements except C and·N. It was found that 
results without C and N were more accurate compared with results calculated with C and N being takeri into 
account.· Even if only 1/2 [maximumr of C and N were introduced into calculation it would lead to a much 
overestimated · beta transus temperature, This is because their real ·contents· are far below their nominal 
maximum amount [16]. As C and N strongly influence the beta transus temperature, it is reasonable that the 
beta temperature would be overestimated when their amounts are overestimated. Therefore, it is recommended 
that C and N had better not be taken into account at'this stage no accurate data are available. As·O and'Fe 
always: exist, they were given values of 0.1 %wt· ·and 0.2%wt separately when ·no data were available (as 
inpurities their concentrations are around these values). Figure 1 shows the comparison of experiinental results 
and the predicted results: Some statistical analysis of these results is given in Table 1. 
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Figure 1 Comparison of experimental results and calculated results using Thermo-Cale 
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Table 1. Statistical analysis of experimental and Thenno-Calc results of ~-transus 
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where x; is the calculated result, Xio is the expei:imental value and n is the number of alloys: It can be seen that 
thennodynamic calculation using Thenno-Calc has given reasonable· results for most.cases. However, for some 
alloys such as Ti-13V-l 1Cr-3Al and Ti-4Al-4Mo-4Sn-0.5Si, notable errors _arose,-while Thenno-Calc were 
used to calculated their beta transus temperatures. Explanation for some cases is that, as declared by the Ti­
Data database, there are some compositional limitations to be recognised while_ using this Ti-Data database 
which are stated in Appendix. Attention should be paid to when thennodynamic calculation is carried out on 
alloys such as Ti-13V-11Cr-3Al, whose chromium content 11%wt is far out of the limited amount 5%wt. 
Errors linked with alloys like Ti-4Al-4Mo-4Sn-0.5Si is due to not taking C into account during the calculation 
whereas it was added on purpose here with an amount of 0.05-0.20% [11]. The calculated result is 1034°C, 
close to its experimental datum 1050°C. The incompleteness of the Ti-Data database may also cause errors. As 
the influence of C and N were not taken into account, it is understandable that the average of the calculated 
results is slightly lower than that of the experimental results since small amount .of C and N has much 
influence on increasing the ~-transus temperature. 
Nevertheless, _thennodynamic calculation with Thenno-Calc package provides a way to predict the beta transus 
temperature of alloys. Beside this, it can also be used to -calculate the phase transfonnation. fraction, arid 
element distribution in different phases at certain temperature [1,10). Upgrading of the database, and taking 
more elements and species into account may lead to more accurate results of calculation in the future. 

-
3. ARTIFICIAL NEURAL NETWORK MODELLING 

As aforementioned, another modelling approach is to derive ~ m~t~en{atical model based o~·_process data alone 
while ignoring the physical background of the process. A wide.vafiety·of linear statistical methods have been 
developed, which have proved to be powerful· tools in data analysis.· An· artificial neural· network (ANN) can 
also be employed, which is basically a non-linear sta~isticat technique ... ANNs "are ,relatively easy to be 
employed, but, the validation of such a model is always a weak point. Usually the validation is executed 
statistically with separate dataset. It ·should be pointed out'that the ANNs ~e not weli 'suited fofexfrapolation. 
It can be considered as a 'black box' operation which can'link input data to output data ~n a very cleyer but 
uncontrollable way. In extreme cases, ANNs can lead to absurd results. Therefore, background knowledge is 
needed to evaluate the credibility when they are used to do predtction. · ' · · 
For the modelling of beta transus temperature, input data is the chemical composition of each alloy. Other less 
important factors which might influence the beta transus temperature have no(been taken into account at this 
stage due to lack of data. The output of the neural network is only one, the beta tr~sus t~~perature. Detailed 
infonnation about the working principle of ANNs can be referred to elsewhere [ 17, 18). 

3.1. MODELLING METHOD 

A number of techniques of artificial nel!:-a! netwcr)-r !nodelling have been developed·and im·e~!igated over the 
years by mathematicians. The most widely studied is:'backpropagation', which is. used in the current,woik 
Backpropagation provides a way of using examples bf a target function to find the coefficients that make a 
certain mapping function approximate the target function as close as possible. A fully connected three-layer 
feedforward network is employed to visualise how the computation is carried out (Figure 2). 
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The network consists of three layers: the input, hidden, and output layers. Each node in the input layer brings 
into the network the value of one independent variable. The nodes in the hidden layer do most of the work. 
Each of the output nodes computes one dependent variable. This network is fully connected in that there are 
links between all the nodes in adjacent layers. There is a separate link from each input node to each hidden 
node and from each hidden node to each output node. Each link has a connection strength, or weight, which is 
stored in and maintained by the node on the receiving end of the link. The network operates in two modes: 
mapping mode and learning mode. In mapping mode, information flows forward through the network, from 
inputs to outputs. In learning mode, the information flow alternates between forward and backward. In 
mapping mode, the network processes one example at a time, producing an estimate of the values of the 
dependent variables (weights) based on the values of the independent variables for that example. The 
schematic diagram of the mapping and learning is illustrated in Figure 3. 
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In simplified mathematics terms, the computation can be described as follows, for a network with three layers. 
The numbers of nodes of input, hidden and output layers are I, J, K, respectively. The computation takes place 
in the following order: 

(1) Given input variables Xi, where i = 1, I; 

(2) ui = g1 (aixi), for i = 1, I; 
I 

(3) Y·=b0-+:ra .. u-· 
J J i=l IJ I ' 

(4) V j = g2 (y j), for j = 1, J; 

J 
(5) zk = Cok + :rbik vi, fork= 1, K, where Zk is the k-th output variable. 

j=l 

The above-mentioned ai, a;i, bik and cok are usually called weights; Ui and vi are inputs to the hidden layer and 
the output layer, respectively; Yi is the output of the hidden layer; and g1 and g2 are named transfer functions. 
Theoretically, the transfer function can be any kind of sigmoid functions such as logistic function and 
hyperbolic tangent function, which are commonly used. 

64 



TITANIUM'99: SCIENCE AND TECHNOLOGY 

3.2. DATA 

The dataset consisted of 9 input variables, and one output variable. The input variables are the chemical 
concentration of element Al, Cr, Fe, Mo,. Nb, Sn, Si, V ap.d Zr. The whole dataset includes 44 input-output 
data pairs. As there is only one alloy containing Ta element (l.Oo/owt) and one alloy containing Ni (0.8%wt), 
these elements were not taken into account. The output variable is the beta transus temperature. It should be 
noted that alloys with maximum or minimum amount of each element were put into the training instead of 
testing data on purpose, as neural networks cannot cope with extrapolation. Table 2 shows the dataset for 
modelling in a statistical term. · 

Table 2 Statistical analysis of the input and output variables 
( ll l t tr ti . wto/i) a oy e emen concen a onm 0 

Variables Number of alloys Min Max Mean Standard· 
containing this element Deviation 

Al 39 0 7.85 3.71 · 2.30 

Cr 8 0 11 0.64 l.93 

Fe 44 0.05 
'• 

5 o'.65 l.05 ,, 

Mo 28 0 15 2.84 4.46 

Nb . ' 5 0 7 '0.28 1.11 

Sn 20 0 11 1.38 2.15 

Si 14 0 0.5' ,, 0.01 ' 0.14 

V 13 0 15 2.12 4.15 

Zr 19 0 11 1.66 2.47 

~-transus (0 C) - 700 1050 912 108 

The software used in the present work is Trajan 2.1 Sha_reware Ne~ral Network Simulator developed by Trajan 
Software Ltd., .U.K. Detailed huormation about this' package can be obtained from Ref. (19]. As the transfer 
function used here is logistic function 

f(x) = 1/( 1 +e-x) 
whose output range is (0, 1), normalisation of the output :variable, the beta transus temperature, is:.operated by 

XN = (X-Xmin)/(Xmax-Xmin) 
where x is the beta transus of a certain alloy, XN is the normalised value of x and Xmin and,xmax are the minimum 
and maximum values of the beta transus in the entire dataset, respectively. The same normalisation was also 
operated on each input variable, i.e., the concentration of each element. 

3.3 RESULTS·, 

3.3.J. Mode/performance 

As Kurt et al. [20) have shown that a three layer ANN with sigmoid transfer functions can map any function of 
practical interest,. a three· layer neural network model is used in the present work. This network consists of 9 
input nodes, a number of hidden nodes, and an output variable representing the beta transus temperature. The 
44 dataset used was divided into two groups, each containing 22 input-output data pairs, for model training 
and model verification respectively. 
There is no short cut to determining the number of hidden nodes, but through observing the perfoimance · of 
each model. The number of hidden nodes used here is from 2 to 10. Training process has. been performed for 
each model. The performance of a model can be evaluated by its training error and testing error. Training of 
the neural networks stops when the verification error begins to increase [ 17]. The training error decreases as 
the number of hidden nodes increases. However, the complexity of the model also increases with the number of 
hidden units. A high degree of complexity may not be justified, and in an extreme :case; the ·model may 
meaninglessly attempt to fit the noise in the experimental data. In circumstances where two models give 
similar results over the known data set, the more probable model would be predicted to be th~t ;hich is 

~~ . ' . 

There are nine. models tested in the current work, and results show that the model with 5 hidden nodes· is 'of the 
best 'performance (model 9-5-1). Statistic.al a~alysis of the 9-5-1 model, compared with another model 9-10-1 
(10 hidden nodes), "is listed in Table 3, where Mean error and Error deviation were calculated' using fomula (1) 
and (2) as well. Figures 4 and 5 iilustrate the performance of this model on training data anci verification data. 
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Figure 4 Performance of9-5-l model 
on training data 
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Figure 5 Performance of 9-5-1 model 
on verification data 

Table 3 Statistical analysis of model 9-5-1 and 9-10-1 (P-transus in °C) 

Data analysis Exnerimental data 9-5-1 model 9-10-1 model 
Mean value Data S.D. Mean error Error deviation Mean error Error deviation 

Trainin~ data 892 110 -2.1 16 -1.7 19 
Verification data 931 106 -3.3 22 -0.3 24 

Whole dataset 912 108 -2.7 19 -0.7 22 

3.3.2. Beta transus prediction 

The 9-5-1 neural network model was used to do P-transus prediction for five titanium alloys, which had not 
been used in training and verification. Therefore the results can give some indication of the performance of 
this neural network model. The results are shown in Table 4, compared with results from Thermo-Cale 
calculation. It should be noted that TBI, TB2 are beyond the concentration range limited by Thermo-Cale, and 
alloy specification instead of real composition were used for TBl, TB2 and TB3. However, the performance of 
a neural network model should be tested with a large amount of data rather than just a few cases. 

Table 4 Modelling results of 9-5-1 neural network model (P-transus in °C) 

Alloy Experimental Using 9-5-1 model Using Thermo-Cale 
designation data Result Error Result Error 

TBl (Ti-3Al-3Mo-11Cr) 765 735 30 806 -41 
TB2 (Ti-3Al-5Mo-5V-8Cr) 750 739 11 784 -34 

TB3 (Ti-3.5Al-10Mo-8V-1Fe) 755 775 -20 743 12 
Ti-13V-2.7 Al-7Sn-2Zr 765 774 -9 716 -11 

Ti-5Al-1Sn-1 V-1Zr-0.8Mo 980 989 -9 980 0 

3.3.3. Phase diagram calculation of Ti-Al and Ti-Mo 

The influences of Al and Mo on beta transus temperature have also been quantified using the 9-5-1 model, 
compared with the results from Thermo-Cale calculation. Results are shown in Figure 6 and Figure 7, where 
experimental data are also illustrated [11]. As O and Fe are always present, their contents were treated as 0.1% 
and 0.2%, while using Thermo-Cale to do the calculation. It can be seen that results of both models agree with 
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the experimental data reasonably well, especially when their concentrations are no more than 5%wt. However, 
the error from ·either method increases when the element content is out of its compositional limitation. This 
phenomenon is very obvious when Al is over 7%wt·for the case using 9-5-1 model to calculate Ti~Al diagram. 
Attempt was also taken to imitate the influence of O on the beta transus temperature. Whereas the Thermo­
Cale calculation can give accurate results and neural network model cannot fulfill the job as O; C, N were not 
taken into account in training. It can also be seen that for both Ti-Al and Ti-Mo binary phase diagrams 
calculation, Thermo-Cale can .generate more accurate results than using ANNs modelling. This might be 
attributed to the wide validation of Ti-Data database during its creation and development phases using some 
well-studied and commonly-used phase diagrams especially binary phase diagrams. 
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4. CONCLUSIONS 

15 

Two different methods have ~een used to model the beta transus temperature of titanium alloys. One is based 
on thermodynamic calculation, using the Thermo-Cale package. The other is artificial neural networks 
modelling, which takes beta transus as an implicit function of chemical composition. Results of both methods 
agree with the experimental results very well. The well-trained neural network model has also been used to 
predict the beta transus temperature of new alloys with good performance. Moreover,· influences: of alloy 
element Al and Mo on the beta transus temperature in binary systems have been modelled. However, both 
metll.ods have their own compositional limitations for each elem~nt, ~hich restrains their applications. 
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Appendix. . . An introduction to Ti-Data database 

Ti-Data is a database created with specific· aim of allowing phase diagram· calculations to be performed for 
multi-component, conventional Ti-alloys. It contains most of the elements that are currently used in Ti-alloys. 
Moreover, it has been extensively validated against commercially useful alloys. Ti-Data contains the following 
elements: 

Ti'-Al-Cr-Fe-Mo-Nb-Si-Sn-Ta-V-Zr-C-O~N-B 

The phases which are included in the database are: 

Liquid, BCC(p), HCP(cx.), Laves_Cl4, Laves..:.Cl5, TiFe_B2, Ti5Si3, TiZrSi, cx.rTiJAl, TiB, TiB2, _ 

M(C,N),. SiC, Ti2N 

It should also be noted that this database has been designed for use with conventional ex.IP-type Ti-alloys, and it 
has been validated in the compositional spectrum associated with such alloys. As such some c~mpositional 
limitations should be recognised when using the database. These are stated for each element below: 

Ti >75%wi . Al< 8%wt . - . . . Cr <.5%wt ...... Fe <'3'%wi ·. 

Si< 0.5%wt Sn< 5%wt · C < 0.08%wt - 0 < 0.3%wt 

N < 0.04%wt B < 0.05%wt · 

Mo, Nb, Ta, V, Zr: Total levels of these elements in titanium alloys should not usually exceed · 
. ' i 

20%wt with maximum levels of individual additions not exceeding 15%. 
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