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ABSTRACT.

Two. different methods, thermodynamic calculation and artificial neural networks modellmg, have
been used to model the beta transus temperature of titanium alloys. Results from either method agree
with experimental results very well. The well-trained neural network model has also been successfully
-used.to-predict the beta transus temperature of new alloys which showed good performance. Influences
of alloy elements Al and Mo on the beta, transus temperature in Ti-Al and Ti-Mo binary system have
also been modelled; the results are again in good agreement with experimental data. In addition, the
appropriate concentration range of both methods for each element has been listed.
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1. INTRODUCTION

Materials production technology requires a detailed knowledge of process parameters and the effects of these
parameters on product properties. Essentially there are two different ways of predicting these effects. Firstly
one can develop a model which describes physical relations between parameters and product properties, and
verify.this model using experiments. Alternatively, a model can be-created by applying statistical techniques to
existing production data. The advantage of.the former method is that it is associated with a basic
understanding of the mechanism of the phenomenon. However, an explicit physical model of the production
process requires knowledge. of all relations between production parameters, microstructure and final properties
which are usually difficult to obtain. In this aspect, the advantage of: the latter approach is that it can cope with
incomplete dataset without prior knowledge of the physical background of the processes occurring. However,
some background knowledge might be needed to interpret the statistical or predicted. results.
In the current work, both approaches were used to model the alpha to beta transformation in titanium alloys. In
recent years, phase transformation modelling of titanium alloys has become much attractive as a means toward
full control of the microstructure through processing so as to-more -thoroughly exploit the superior combined
properties of these remarkable materials. Because of the potential of strengthening by the control of
microstructure, knowledge of fundamental properties such as the B-transus temperature and volume fraction of
" o or B as a function of temperature is a critical factor in alloy design and selection of processing parameters.
Modelling of beta transus temperature is a suitable starting point as it has relatively little relation” with
production parameters, which makes the problem much simpler, compared w1th modelling of mechanicai
properties such as tensile strength and hardness, and corrosion resistance.
Thermodynamic theories of phase transformation in materials have been well developed and computer
packages have been produced which can be used to calculate the equilibrium status at different conditions, such
as MTDATA and Thermo-Calc [1]. The first method in this paper is to use the Thermo-Calc (TC) package,
which was developed at the Royal Institute of Technology in Sweden, particularly for thermodynamic
calculation of materials based on various databases. The database specially for calculation of titanium alloys is
the Ti-Data database assembled by ThermoTech Ltd. in the United Kingdom [2].
The second method is to use artificial neural networks (ANNS) to construct a quantitative black-box model for
titanium alloys, which connects input data to output data without making any prior assumptions on the type of
functional dependence. Usually, the input data can be processing conditions- and the output data the
mechanical or physical properties of the final product. In the present study, the inputs and output are much
simpler which are the chemical composition of each alloy element and the beta transus temperature of an alloy,
respectively. Such method - has been successfully used to model the austenite formation and mechanical
properties of steels [3-7]. More information about these two methods is detailed in the following sections.
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2. THERMODYNAMIC CALCULATION USING THERMO-CALC

2.1 METHOD

A traditional way of materials research is to construct a physical model based on a theoretical concept which is-
then verified with experimental data. Continuing improvement of the model is required to increase its level of
generalisation as new phenomena are discovered. Ti-based alloys, although in wide applrca'uon only smce‘_
1940's, were one of the first material types to which thermodynamic calculations such as phase diagram were’
applied [8,9]. Improvements in modelling and the increase in computing power have ‘since enabled very
accurate predictions to be made for phase equilibria in industrial multicomponent alloys. Saunders and
Chandrasekaran showed that in a Ti-6Al-4V alloy with O, C and N included, the effect of O on the p-transus
could be accurately predicted [8]. 7

Based on various thermodynamic databanks available, Thermo-Calc has been developed which is the program
used in the present work. The main method of this package is a Gibbs free energy minimisation process, and it
can handle single equilibrium, property diagrams or phase diagrams with up to 20 elements. In this paper,
modelling work of titanium alloys using Thermo-Calc has been carried out, using Ti-Data, a database for Ti-
based alloys, which takes 15 elements (Ti-Al-Cr-Fe-Mo-Nb-Si-Sn-Ta-V-Zr-C-O-N-B) into account. Detailed
information about the Thermo-Calc package and Tr-Data database can be referred to Refs. [10] ‘and [2],
respectively. .

2.2 RESULTS

Thermodynamic calculation of the beta transus temperatures of 50 kinds of titanium alloys has been
carried out in the present work. The chemical composition and experimental beta transus data of these alloys
are obtained from references [11-15]. The maximum values for O and Fe in alloy specification were used in the
calculations. The average composition was adopted for all the other elements except C and-N. It was found that
results without C and N were more accurate compared with results calculated with C and N being taken into
account. Even if orily 1/2 [maximum] of C and N were introduced into calculation it would lead to a much
overestimated beta transus temperature. This is because their real -contents-are far below their nominal
maximum amount [16]. As C and N strongly influence the beta transus temperature, it is reasonable that the
beta temperature would be overestimated when their amounts are overestimated. Therefore, it is recommended
that C and N had better not be taken into account at this stage no accurate data are available. ‘As-O and-Fe
always' exist, they were given values of 0.1%wt-and 0.2%wt separately when no data were available (as
inpurities their concentrations are around these values). Figure 1 shows the comparison of experlmental results
and the predlcted results Some statlstrcal analysrs of these results is given m Table l -_ -
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Figure 1 Comparison of experimental results and calculated results using Thermo-Calc
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Table 1. Statistical analysis of expenmental and Thermo-Calc results of B -transus

Expenmental Tesults . . ° - Calculated results

Max / Min (°C) - - - - 1038/720 < . 10377702
‘Méan value (°C) HE Tt 900 e R
Standard deviat_ion‘(°C) _ ’ 101 i ' " 103
Mean error (°C) ' ‘ I Co
Error deviation (°C) ) ' U
In Table 1,
n
Meanerror——Z(xi—xio) . (1)

Error deviation = ‘/ (nz (x; =xi0)” ~ (Z (x Xi0)") (n o ’ (2)

where x; is the calculated result, x;jo is the expenmental value and n is the number of alloys. It can be seen that
thermodynamic calculation using Thermo-Calc has given reasonable results for most cases. However, for some
alloys such as Ti-13V-11Cr-3Al and Ti-4Al-4Mo-4Sn-0.5Si, notable errors arose ‘while Thermo-Calc were
used to calculated their beta transus temperatures. Explanation for some cases is that, as ‘declared by the Ti-
Data database, there are some compositional limitations to be recognised while_using this Ti-Data database
which are stated in Appendix. Attention should be paid to when thermodynamic calculation is carried out on
alloys such as Ti-13V-11Cr-3Al, whose chromium content 11%wt is far out of the limited amount 5%wt.
Errors linked with alloys like Ti-4Al-4Mo-4Sn-0.5Si is due to not taking C into account during the calculation
whereas it was added on purpose here with an amount of 0.05-0.20% [11]. The calculated result is 1034°C,
close to its experimental datum 1050°C. The incompleteness of the Ti-Data database may also cause errors. As
the influence of C and N were not taken into account, it is understandable that the average of the calculated
results is slightly lower than that of the expenmental results since small amount .of C and N has much
influence on increasing the f-transus temperature.

Nevertheless, thermodynamic calculation with Thermo-Calc package provides a way to predict the beta transus
temperature of alloys. Beside this, it can also be used to-calculate the phase transformation. fraction, and
element distribution in different phases at certain temperature [1,10]. Upgrading of the database, and taking
more elements and species into account may lead to more accurate results of calculation in the future.

3. ARTIFICIAL NEURAL NETWORK MODELLING

As aforementioned, another modelling approach is to derive a mathemancal model based on process data alone
while ignoring the physical background of the process. A wide variety 'of linear statistical methods have been
developed, which have proved to be powerful-tools in data analysis.An-artificial neural network (ANN) can
also be employed, which is basically a non-linear statistical technique. ANNs are.relatively easy to be
employed, but, the validation of such a model is always a weak point. Usually the validation is executed
statistically with separate dataset. It should be pointed out'that the ANNs are not well ‘suited for’ extrapolatlon
It can be considered as a ‘black box' operation which can'link input data to output data in-a very clever but
uncontrollable way. In extreme cases, ANNs can lead to absurd results. Therefore background knowledge is
needed to evaluate the credibility when they are used to do prediction.

For the modelling of beta transus temperature, input data is the chemical composition of each alloy. Other less
important factors which might influence the beta transus temperature have not 'been taken into account at this
stage due to lack of data. The output of the neural network is only one, the beta transus temperature. Detailed
information about the working principle of ANNs can be referred to elsewhere [17,18].

3.1. MODELLING METHOD

A number of techniques of artificial nev-a! netwer¥~ modelling have been developed and investigated over the
years by mathematicians. The most widely studied is-'backpropagation’, which is.used in the.current: woik.
Backpropagation provides a way of using examples of a target function to find the. coefficients that make a
certain mapping function approximate the target function as close as possible. A fully connected three-layer
feedforward network is employed to visualise how the computation is carried out (Figure 2).
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The network consists of three layers: the input, hidden, and output layers. Each node in the input layer brings
into the network the value of one independent variable. The nodes in the hidden layer do most of the work.
Each of the output nodes computes one dependent variable. This network is fully connected in that there are
links between all the nodes in adjacent layers. There is a separate link from each input node to each hidden
node and from each hidden node to each output node. Each link has a connection strength, or weight, which is
stored in and maintained by the node on the receiving end of the link. The network operates in two modes:
mapping mode and learning mode. In mapping mode, information flows forward through the network, from
inputs to outputs. In learning mode, the information flow alternates between forward and backward. In
mapping mode, the network processes one example at a time, producing an estimate of the values of the
dependent variables (weights) based on the values of the independent variables for that example. The
schematic diagram of the mapping and learning is illustrated in Figure 3.

Input Layer Hidden Layer Output Layer
Figure 2 Structure of a neural network
layer 1 layer 2 layer 3
input . R target
- - output
A
error
1; 3 L
weight weight weight
correction in [ correction in |4 correction in
layer 1 layer 2 layer 3

Figure 3 Schematic diagram of mapping and learning

In simplified mathematics terms, the computation can be described as follows, for a network with three layers.
The numbers of nodes of input, hidden and output layers are I, J, K, respectively. The computation takes place
in the following order:

(1) Given input variables x;, wherei=1,1;

(2) u; =gy(a;x;),fori=11T,

(3) y;=by; +i‘éaijui ;

@) vy=gy(y;),forj=11

(5) zy =cg + _élb KVjs for k = 1, K, where z is the k-th output variable.
The above-mentioned a;,Jaij, by and cq are usually called weights; u; and v; are inputs to the hidden layer and
the output layer, respectively; y; is the output of the hidden layer; and g, and g, are named transfer functions.

Theoretically, the transfer function can be any kind of sigmoid functions such as logistic function and
hyperbolic tangent function, which are commonly used.
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3.2. DATA

The dataset consisted of 9 input variables, and one output variable. The input variables are the chemical
concentration of element Al, Cr, Fe, Mo, Nb, Sn, Si, V and Zr. The whole dataset includes 44 input-output
data pairs. As there is only one alloy containing Ta element (1.0%wt) and one alloy containing Ni (0.8%wt),
these elements were not taken into account. The output variable is the beta transus temperature. It should be
noted that alloys with maximum or minimum amount of each element were put into the training instead of
testing data on purpose, as neural networks cannot cope with extrapolation. Table 2 shows the dataset for
‘modelling in a statistical term.

Table 2 Statistical:-analysis of the input and output variables ' S .
(alloy element concentration in wt%)

Variables Number of alloys Min Max Mean Standard’
containing this element Deviation
Al 39 0 7.85 3.71 -2.30
Cr 8 - 0 11 0.64 © 0 1.93
Fe . 44 0.05 5 | 065 1.05
Mo 28 0 15 2.84 4.46
Nb 5 0 7 '] 0.8 1.11
Sn 20 0 11 - 1.38 2.15
Si : 14 0 0.5 | 007 0.14
v S 0 15 C2.12 4.15
Zr 19 0 11 1.66 2.47
B-transus (°C) - 700 1050 © 912 108

The software used in the present work is Trajan 2.1 Shareware Neural Network Srmulator developed by Trajan
Software Ltd.,-U K. Detailed information about thxs package can be obtained from Ref. [19]. As the transfer
function used here is logistic function
f(x) = 1/(1+e™) :
whose output range is (0, 1), normalisation of the output variable, the beta transus. temperature is-operated by
XN = (x'xrrun)/ (xmax'xmm)
where x is the beta transus of a certain alloy, xy is the normalised value of x and Xui, and:x., are the minimum
and maximum values of the beta transus in the entire dataset, respectively. The same normahsatlon was also
operated on each mput variable, i.e., the concentration of each element.

3.3 RESULTS -
3.3.1. Model performance

As Kurt et al. [20] have shown that a three layer ANN with sigmoid transfer functions can map any function of
practical interest, a three layer neural network model is used in the present. work. This network consists of 9
input nodes, a number of hidden nodes, and an output variable representing the beta transus temperature. The
44 dataset-used was divided into two groups, each containing 22 input-output data pairs, for model training
and model venﬁcatron respectively.

There is no short cut to determining the number of hidden nodes, but through observrng the performance of
each model. The number of hidden nodes used here is from 2 to 10. Training process has been performed for
each model. The performance of a model can be evaluated by its training error and testing error. Training of
the neural networks stops when the verification error begins to increase [17). The training error decreases as
the number of hidden nodes increases. However, the complexity of the model also increases with the number of
hidden units. A high degree of complexity ‘may not be justified, and in an extreme-case; the ‘model may
meaninglessly attempt to fit the noise in the experimental data. In circumstances where two models give
similar results over the known data set, the more probable model would be predrcted to be that which is
simpler.

There are nine models tested in the current work and results show that the model wrth 5 hidden nodes is‘of the
best performance (model 9-5-1). Statistical analysrs of the 9-5-1 model, compared with another model 9-10-1
(10 hidden nodes), is listed i in Table 3, where Mean error and Error deviation were calculated using fomula 0))
and (2) as well.” Figures 4 and 5 illustrate the performance of this model on training data and verification data.
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Figure 4 Performance of 9-5-1 model Figure 5 Performance of 9-5-1 model
on training data on verification data
Table 3 Statistical analysis of model 9-5-1 and 9-10-1 (B-transus in °C)
Data analysis Experimental data 9-5-1 model 9-10-1 model
Mean value | Data S.D. | Mean error |Error deviation} Mean error | Error deviation
Training data 892 110 2.1 16 -1.7 19
Verification data 931 106 -3.3 22 -0.3 24
Whole dataset 912 108 -2.7 19 -0.7 22

3.3.2. Beta transus prediction

The 9-5-1 neural network model was used to do B-transus prediction for five titanium alloys, which had not
been used in training and verification. Therefore the results can give some indication of the performance of
this neural network model. The results are shown in Table 4, compared with results from Thermo-Calc
calculation. It should be noted that TB1, TB2 are beyond the concentration range limited by Thermo-Calc, and
alloy specification instead of real composition were used for TB1, TB2 and TB3. However, the performance of
a neural network model should be tested with a large amount of data rather than just a few cases.

Table 4 Modelling results of 9-5-1 neural network model (B-transus in °C)

Alloy Experimental Using 9-5-1 model Using Thermo-Calc
designation data Result Error Result Error
TB1 (Ti-3Al-3Mo-11Cr) 765 735 30 806 -41
TB2 (Ti-3Al-5Mo-5V-8Cr) 750 739 11 784 -34
TB3 (Ti-3.5A1-10Mo-8V-1Fe) 755 775 -20 743 12
Ti-13V-2.7A1-78n-2Zr 765 774 -9 776 -11
Ti-5A1-1Sn-1V-1Zr-0.8Mo 980 989 -9 980 0

3.3.3. Phase diagram calculation of Ti-Al and Ti-Mo

The influences of Al and Mo on beta transus temperature have also been quantified using the 9-5-1 model,
compared with the results from Thermo-Calc calculation. Results are shown in Figure 6 and Figure 7, where
experimental data are also iltustrated [11]. As O and Fe are always present, their contents were treated as 0.1%
and 0.2%, while using Thermo-Calc to do the calculation. It can be seen that results of both models agree with
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the experimental data reasonably well, especially when their concentrations are no more than 5%wt. However,
the error from either method increases when the element content is out of its compositional limitation. This
phenomenon is very obvious when Al is over 7%wt for the case using 9-5-1-model to calculate Ti-Al diagram.
Attempt was also taken to imitate: the influence of O on the beta transus temperature. Whereas the Thermo-
Calc calculation can give accurate results and neural network ‘model cannot fulfill the job as O; C, N were not
taken into ‘account in training. It can also be-seen that for both Ti-Al and Ti-Mo binary phase:diagrams
calculation, Thermo-Calc can generate more accurate results than using ANNs modelling. This might be
attributed to the wide validation of Ti-Data database during its creation and development phases usmg some
well-studied and commonly-used phase diagrams especially binary phase diagrams. -

.1150 - i . ) 950
—&— Thermal-Calc results

1100 + —&— Neural netiv ofK results
——— Experimental r‘e”su‘lté

—&— Thermo-Calc results
. —8— Neural Netw ork results
" ——— Experimental results .

900

1050 }

1000 1

950 1

Beta Transus Temperature ( °C)
Beta Transus:Temperature( °C)

900 1
850 EEAS— — =+ : t T -
0o 2 4 6 8 10 0 5 .10 15
Al (Wt%) , . Mo (wt%)
Figuié 6 Comiparison of different models with Figure 7 Comparison of different models with
experiméntal resilts for Ti-Al system . experimental results for Ti-Mo system

4. CONCLUSIONS -

Two different methods have been used to model the beta transus temperature of titanium alloys. One is based
on thermodynamic calculatxon using the Thermo-Calc package. The other is artificial neural networks
modelling, which takes beta transus as an implicit function of chemical composition. Results of both methods
agree with the experimental .results very well. The well-trained neural network model has also been used to
predict the beta transus temperature of new alloys with good performance. Moreover, influences of alloy
element Al and Mo on the beta transus temperature in binary systems have been modelled. However, both
methods have their own compositional limitations for each element, which restrains their applications.
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Appendix_ An' intrbduc_tionv to Ti-Data database

Ti-Data is a database created with specific airh of allowing phase diagram calculations to be performed for
multi-component, conventional Ti-alloys. It contains most of the elements that are currently used in Ti-alloys.

Moreover, it has been extensively validated against commercially useful alloys. Ti-Data contains the followmg
elements

Ti-Al- Cr-Fe-Mo-Nb Si-Sn-Ta-V-Zr-C-O-N-B

The phases which are mcluded in the database are:
Liquid, BCC(B) HCP(a) Laves_C14, Laves C15 TxFe Bz, T15$13, TiZrSi, az-T13A1 T1B Tsz, .
M(CN), SiC, TiN 0 - -

It should also be noted that this database has been designed for use with conventional o/B-type Ti-alloys, and it
has been validated in the compositional spectrum associated with such alloys. As such some composmonal
limitations should be recognised when using the database These are stated for each element below:

St

Ti S75%wt . Al<8%wt. . Cr<S%wt . Fe<3%wi -,
Si<0.5%wt Sn<s%wt .  -C<008%wt - . -0<03%w
N <0.04%wt - B<0.05%wt- :

Mo, Nb, Ta, V, Zr: Total levels of these elements in titanium alloys should not usually exceed
20%wt with maximum levels of individual additions not exceeding 15%.
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