Presented by:
Peter Zimm
Principal • Aerospace & MRO • ICF International
peter.zimm@icfi.com

Aerospace Production & Supply Chain Outlook

October 5, 2015 – Orlando, FL
Today’s Agenda:

- Aerospace Demand Outlook
- Key Supply Chain Trends
- Conclusions
Today’s Agenda

- Aerospace Demand Outlook
- Key Supply Chain Trends
- Conclusions
AEROSPACE DEMAND OUTLOOK

Total aircraft production in 2014 is 4,976 units; air transport aircraft account for 61% of value

2014 Aircraft Production by Market

By Units
- Air Transport: 33%
- Civil Rotary Wing: 21%
- Military Fixed Wing: 9%
- Military Rotary Wing: 15%
- Business Aviation: 22%

By Value
- Air Transport: 61%
- Military Fixed Wing: 11%
- Civil Rotary Wing: 11%
- Business Aviation: 13%
- Military Fixed Wing: 9%

Source: ICF analysis
AEROSPACE DEMAND OUTLOOK

Annual production value is expected to reach more than $200B, with unit production eclipsing 6,000 aircraft by 2024

Aircraft Production 2014-2024
By Market Segment

Aircraft

<table>
<thead>
<tr>
<th>Year</th>
<th>Military Fixed Wing</th>
<th>Military Rotary Wing</th>
<th>Civil Rotary Wing</th>
<th>Business Aviation</th>
<th>Air Transport</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>3,500</td>
<td>1,500</td>
<td>1,000</td>
<td>2,000</td>
<td>2,000</td>
<td>8,000</td>
</tr>
<tr>
<td>2019</td>
<td>4,000</td>
<td>1,800</td>
<td>1,200</td>
<td>2,200</td>
<td>2,200</td>
<td>9,400</td>
</tr>
<tr>
<td>2024</td>
<td>4,500</td>
<td>2,000</td>
<td>1,400</td>
<td>2,400</td>
<td>2,400</td>
<td>10,300</td>
</tr>
</tbody>
</table>

$B USD*

<table>
<thead>
<tr>
<th>Year</th>
<th>Military Fixed Wing</th>
<th>Military Rotary Wing</th>
<th>Civil Rotary Wing</th>
<th>Business Aviation</th>
<th>Air Transport</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>$100</td>
<td>$150</td>
<td>$100</td>
<td>$80</td>
<td>$150</td>
<td>$460</td>
</tr>
<tr>
<td>2019</td>
<td>$120</td>
<td>$180</td>
<td>$120</td>
<td>$88</td>
<td>$180</td>
<td>$578</td>
</tr>
<tr>
<td>2024</td>
<td>$140</td>
<td>$200</td>
<td>$140</td>
<td>$96</td>
<td>$200</td>
<td>$662</td>
</tr>
</tbody>
</table>

Source: ICF analysis

* Constant 2014 US$
Overall raw material demand has increased slightly with the latest update to ICF’s production forecast.

Changes in Production Rates & Raw Material Demand

V.S. Previous Year’s Forecast

<table>
<thead>
<tr>
<th>Platform</th>
<th>2015-2023 Net Production Rate Δ (vs Previous Forecast)</th>
<th>2015-2023 Net Material Demand lbs Δ (vs Previous Forecast)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A330neo</td>
<td>+100</td>
<td>+61M</td>
<td>• A330neo launched in July 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Changed forecast as more information about rates emerged</td>
</tr>
<tr>
<td>A330</td>
<td>-64</td>
<td>-39M</td>
<td>• As A330neo plans firmed up, A330ceo rate cut was announced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• New rates expected to remain firm until A330neo EIS</td>
</tr>
<tr>
<td>737NG/MAX</td>
<td>+312</td>
<td>+44M</td>
<td>• 737NG sales have continued, and further detail on MAX ramp-up announced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Some technical risk remains for 737MAX on-time EIS</td>
</tr>
<tr>
<td>777</td>
<td>-40</td>
<td>-27M</td>
<td>• With 777X EIS in 2019/2020, Boeing has had trouble filling in the 777-300ER backlog</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A production rate cut is expected later in the decade</td>
</tr>
<tr>
<td>E170/190 / E2</td>
<td>-135</td>
<td>-17M</td>
<td>• Lowered estimates compared to previous forecast</td>
</tr>
<tr>
<td>A380</td>
<td>-12</td>
<td>-13M</td>
<td>• Uncertainty over potential updates to A380 and several prominent customer cancellations and deferrals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A decision on the launch of the A380neo is expected to be made within a year</td>
</tr>
<tr>
<td>Air Transport Total (Net)</td>
<td>+256</td>
<td>+8.3M</td>
<td></td>
</tr>
</tbody>
</table>

Source: ICF analysis
Aggregate aerospace raw material demand is 1.56B pounds

2015 Aircraft Raw Material Demand
By Material Type (buy weight)

- **Aluminum Alloys**: 47%
- **Steel Alloys**: 21%
- **Titanium Alloys**: 11%
- **Super Alloys**: 10%
- **Composites**: 5%
- **Other**: 6%

Total 1.56 B lbs

ICF Insight

- Aluminum alloys are nearly half of all total demand
- Steel alloys & titanium are large driver of demand due to their high buy to fly ratios
- Titanium is 11% of demand
- Composites are relatively small part of total demand at just 5% due to their light weight and relatively low buy to fly ratio

Source: ICF analysis
Boeing and Airbus aircraft account for nearly two-thirds of raw material demand

2015 Aircraft Raw Material Demand
By OEM (buy weight)

- **Boeing** 35%
- **Airbus** 30%
- **Bombardier** 5%
- **GE** 4%
- **CFM International** 4%
- **Rolls Royce** 4%
- **Pratt & Whitney** 2%
- **Embraer** 2%
- **Other** 14%

Total 1.56 B lbs

ICF Insight

- Boeing and Airbus aircraft models comprise 65% of demand
- With CSeries ramp up beginning in 2016, Bombardier is the next largest material consumer

Source: ICF Analysis
The total aerospace raw material market is worth over $12 billion

2014 Aircraft Raw Material Value
By Material Type

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Value ($Bn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium Alloys</td>
<td>3.4</td>
</tr>
<tr>
<td>Aluminum Alloys</td>
<td>3.1</td>
</tr>
<tr>
<td>Composites</td>
<td>2.6</td>
</tr>
<tr>
<td>Super Alloys</td>
<td>1.9</td>
</tr>
<tr>
<td>Steel Alloys</td>
<td>1.1</td>
</tr>
<tr>
<td>Other</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>$12.4B</td>
</tr>
</tbody>
</table>

Source: ICF analysis

ICF Insight

- Titanium is the largest material market by value ($3.4B)
- With 787 production ramping up, and A350 long-lead items under production, composites are the third largest category at $2.6B
- The value of superalloys is $1.9B, driven by aero-engine production
Over the next decade aluminum demand will remain solid while composites & titanium will grow the fastest

2014 – 2019 Aerospace Raw Material Demand
By Material (buy weight)

<table>
<thead>
<tr>
<th>Material</th>
<th>Million Lbs 2014</th>
<th>Million Lbs 2019</th>
<th>Type, CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Materials</td>
<td>1,600</td>
<td>1,600</td>
<td>1.0%</td>
</tr>
<tr>
<td>Composites</td>
<td>1,400</td>
<td>1,700</td>
<td>6.2%</td>
</tr>
<tr>
<td>Super Alloys</td>
<td>1,200</td>
<td>1,300</td>
<td>2.0%</td>
</tr>
<tr>
<td>Titanium Alloys</td>
<td>1,000</td>
<td>1,100</td>
<td>3.4%</td>
</tr>
<tr>
<td>Steel Alloys</td>
<td>800</td>
<td>800</td>
<td>0.9%</td>
</tr>
<tr>
<td>Aluminum Alloys</td>
<td>600</td>
<td>700</td>
<td>(0.5%)</td>
</tr>
</tbody>
</table>

Total CAGR: 0.9%

ICF Insight

- Overall raw material demand growth will be lower than aircraft unit growth due to lower buy-to-fly ratios and greater use of composites
- Composites and titanium will be the fastest growing material categories
- Aluminum demand will decrease slightly, but will still represent over 40% of total demand in 2024

Source: ICF analysis
Today’s Agenda

- Aerospace Demand Outlook
- **Key Supply Chain Trends**
- Conclusions
Alcoa’s recent acquisition spree has continued the cycle of Tier 4 consolidation and vertical integration

Firth Rixson (June 2014)
- $1.0B in 2013 revenue; based in Sheffield, UK
- Leader in forged rolled rings, closed die forging, isothermal forging
- Primarily nickel and titanium
- Expanded Alcoa content on next generation engine platforms

Tital (Dec 2014)
- $96M in 2013 revenue
- Based in Germany
- Leader in airframe and engine castings
- More than half of revenues from Titanium castings
- Leader in casting design

RTI International (July 2015)
- Nearly $800M in 2014 revenue; based in US
- Fourth largest aerospace titanium supplier
- Capabilities in machining, additive manufacturing, extrusions, open die forging, newly expanded forging capability

Implications
- Increases aerospace revenue from $4.0B in 2013 to $5.6B pro forma revenue in 2014
- Adds capabilities in titanium raw material, powder metal, castings, additive manufacturing, forged rings, and finished parts
- Expands content on next generation engine and aircraft platforms

Sources: Secondary research, Alcoa
SUPPLY CHAIN TRENDS – IMPORTANT EVENTS SINCE 2014

Berkshire Hathaway’s $32B purchase of PCC is a vote of confidence in the strength of the aerospace backlog

PROS

- Relentless focus on productivity
- Highly profitable
- High entry barriers
- High revenue certainty
- Good timing – bought PCC stock on dip

CONS

- Who will succeed Mark Donegan?
- Supply chain strategies to counter PCC strength
- Focus on metallic parts limits growth potential
- Impact of disruptive technologies

- Berkshire Hathaway’s largest-ever investment
- Values PCC at $32.3B, 12X trailing EBITDA
- Deal announced August, 2015

Our take

- A good deal for Berkshire Hathaway shareholders assuming PCC grooms a CEO successor and prepares for disruptive technologies
- Will PCC’s focus shift from relentless growth through acquisition to cash generation?
Cost reduction will be important as aircraft OEMs target double-digit profitability

- Major aircraft OEMs are driving for double-digit profitability
- One initiative is to secure concessions from suppliers to ensure access to future programs
- OEMs are also expanding their influence and role in the aftermarket
- The implication is downward margin pressure on suppliers

“All of us have got religion. Every 25 years a big moonshot … and then produce a 707 or 787 – that’s the wrong way to pursue this business. The more-for-less world will not let you pursue moonshots.”

– Jim McNerney, Boeing CEO, Boeing Annual Investor Conference, May 2014

Figures are EBIT (Airbus) and Operating Profit (Boeing)
Source: Airbus, Boeing.
Aircraft development activity has been at an elevated level since 2010 – that pace will begin to decline in 2-3 years.

Air Transport & BGA New Programs – Entries into Service 2015-2024

- **Large WB**
 - 747-8
 - 787
 - A350 XWB
 - Superjet 100
- **RJ**
 - CRJ-1000
 - ARJ21
- **2010**
- **2015**
 - A320neo
 - A330neo
 - 737 MAX
 - CSeries
 - C919
 - MRJ
 - MS-21
- **2020**
 - A380neo*
 - 777X
 - E2
- **2025**

Source: ICF International
Aerospace suppliers need to prepare for the new reality

Deliver
- High service level = customer’s life made easier
- High service level -> win the right to bid on more work
- Improvements that increase factory throughput and reduce schedule variability frequently also have cost and yield benefits

De-Cost
- Get ahead of the curve
- Better positioned to address customer challenges
- Earn returns and make critical investments

Defend
- Identify and retain key engineering resources and technologies
- Retain aftermarket revenue streams

Source: ICF International
While the macro environment will change, the micro environment will continue to thrive – and be transformed.
This “revolution from below” presents both opportunities and threats to aerospace suppliers

<table>
<thead>
<tr>
<th>New Materials</th>
<th>Outlook</th>
<th>Implications for Supply Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing adoption of thermoplastic composites, titanium aluminide, and ceramic matrix composites</td>
<td>Part requalification presents opportunities to win new business …</td>
<td></td>
</tr>
<tr>
<td>… but fewer new programs means fewer new materials insertion opportunities</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additive Manufacturing</th>
<th>Outlook</th>
<th>Implications for Supply Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faster laydown rates</td>
<td>Those not investing now will be 5+ years behind when early adopters are certifying parts</td>
<td></td>
</tr>
<tr>
<td>Better finished part mechanical properties</td>
<td>Lower mill volumes … but more expensive material forms</td>
<td></td>
</tr>
<tr>
<td>Certificated parts despite current challenges</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Automation</th>
<th>Outlook</th>
<th>Implications for Supply Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased manufacturing automation</td>
<td>Change in cost structure to higher fixed / lower variable cost</td>
<td></td>
</tr>
<tr>
<td>Continued assembly automation</td>
<td>Compatibility with assembly equipment can be a differentiator</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faster Processing</th>
<th>Outlook</th>
<th>Implications for Supply Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing hard metal machining speeds</td>
<td>Increased investments in tools and equipment (i.e., more capital intensive)</td>
<td></td>
</tr>
</tbody>
</table>

Source: ICF International
Today’s Agenda

- Aerospace Demand Outlook
- Key Supply Chain Trends
- Conclusions
CONCLUSIONS

Aerospace Production & Supply Chain Outlook

- Aircraft production value will grow at 2.4% over the next ten years
- Titanium is expected to grow at 3.4% CAGR

- At the macro level, the market is shifting from technology for performance toward cost-out
 - Deliver, De-Cost, Defend

- At the micro level, the materials and process revolution will continue
Thank you!

For questions regarding this presentation, please contact:

Peter Zimm
Principal – Aerospace & MRO
+1 347 843 9746
Peter.zimm@icfi.com
Through 2024, Boeing will increase production on a number of platforms, while also managing the transition to new programs.

Boeing Air Transport Production Market 2011-2024

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B737NG</td>
<td>369</td>
<td>411</td>
<td>440</td>
<td>485</td>
<td>504</td>
<td>504</td>
<td>382</td>
<td>202</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B737 MAX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>182</td>
<td>422</td>
<td>532</td>
<td>624</td>
<td>624</td>
<td>624</td>
<td>552</td>
<td>552</td>
</tr>
<tr>
<td>Narrowbody Total</td>
<td>369</td>
<td>411</td>
<td>440</td>
<td>485</td>
<td>504</td>
<td>504</td>
<td>564</td>
<td>624</td>
<td>624</td>
<td>624</td>
<td>624</td>
<td>624</td>
<td>552</td>
<td>552</td>
</tr>
<tr>
<td>B767</td>
<td>20</td>
<td>26</td>
<td>21</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B787</td>
<td>3</td>
<td>46</td>
<td>65</td>
<td>114</td>
<td>120</td>
<td>120</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>B777</td>
<td>73</td>
<td>83</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B777-X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>70</td>
<td>104</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>B747</td>
<td>9</td>
<td>31</td>
<td>24</td>
<td>19</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Widebody Total</td>
<td>105</td>
<td>186</td>
<td>208</td>
<td>238</td>
<td>249</td>
<td>247</td>
<td>245</td>
<td>222</td>
<td>212</td>
<td>214</td>
<td>238</td>
<td>272</td>
<td>278</td>
<td>278</td>
</tr>
<tr>
<td>TOTAL</td>
<td>474</td>
<td>597</td>
<td>648</td>
<td>723</td>
<td>753</td>
<td>751</td>
<td>809</td>
<td>846</td>
<td>836</td>
<td>838</td>
<td>862</td>
<td>896</td>
<td>830</td>
<td>830</td>
</tr>
</tbody>
</table>

Source: ICF Research & Analysis
Similarly, Airbus is also managing transitions to new engine programs, while also ramping up the A350XWB platform.

Airbus Air Transport Production Market 2011-2024

<table>
<thead>
<tr>
<th># Aircraft</th>
<th>Actuals</th>
<th>ICF projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A320</td>
<td>421</td>
<td>447</td>
</tr>
<tr>
<td>A320 NEO</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Narrowbody Total</td>
<td>421</td>
<td>447</td>
</tr>
<tr>
<td>A330</td>
<td>87</td>
<td>103</td>
</tr>
<tr>
<td>A330neo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A350XWB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A380</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>Widebody Total</td>
<td>113</td>
<td>133</td>
</tr>
<tr>
<td>TOTAL</td>
<td>534</td>
<td>580</td>
</tr>
</tbody>
</table>

Source: ICF Research & Analysis
ICF AVIATION OVERVIEW

ICF is one of the world’s largest and most experienced aviation and aerospace consulting firms

- 52 years in business (founded 1963)
- 80+ professional staff
 - Dedicated exclusively to aviation and aerospace
 - Blend of consulting professionals and experienced aviation executives
- Specialized, focused expertise and proprietary knowledge
- Broad functional capabilities
- More than 10,000 private sector and public sector assignments
- Backed by parent ICF International (2014 revenue: 1.05 billion USD)
- Global presence — offices around the world

New York • Boston • Ann Arbor • London • Singapore • Beijing
ICF’s functional practices cover the breadth of aviation, offering our airline clients comprehensive insight into industry issues.

Airlines
Operational, strategic and transaction support to airlines and air transport businesses

Aerospace & MRO
Strategy, marketing, transaction support and Operations & Supply Chain services for manufacturers, MROs and investors

Aircraft
Industry-focused financial and technical support for aviation equipment transaction activities

Airports
Operational, strategic and transaction support to regulators, owners, operators, and developers

ICF provides aircraft operators, manufacturers, financiers, lessors, and owners, maintainers, airports, and related businesses with world-class advisory, implementation, and improvement management consulting services.