VDM Ti-X
Titanium Alloy for Exhaust Applications

Orlando, 6th Oct 2015
Jürgen Kiese¹, Christina Schmidt¹, Carsten Siemers²

¹VDM Metals GmbH, Westendstrasse 15, D-45143 Essen, Germany
²Technische Universität Braunschweig, Institut für Werkstoffe, Langer Kamp 8, D-38106 Braunschweig, Germany
VDM Exhaust Grade Ti-X

Objectives

- Oxidation resistant
- Microstructure-stabilized
- Cold-workable
- Low alloyed – cost-efficient
- Industrially produced
VDM Exhaust Grade Ti-X
Alloy development

Properties
- formability at room temperature
 CP-Ti Grade 1S soft grade
- oxidation resistance
 Nb diffusion barrier, reduced mismatch
 Si : Fe ≈ 4 : 1 increased Si diffusion (simulation)
- microstructure stabilisation
 Hf formation of grain boundary particles

Melting and processing
- Si content as low as possible embrittlement / avoidance of Titanium-Silicide formation
- addition of Fe suitable Nb : Fe-ratio, use of master alloy
- low amount of Nb and Hf cost reduction

Compositions investigated in laboratory scale
- Ti 0.4Si 0.1Fe (0.05 - 2)Nb (0.1 - 2)Hf
- fixed Si- and Fe-contents
VDM Exhaust Grade Ti-X
Oxidation behavior of titanium and the role of niobium

Titanium without Niobium addition
- linear oxide layer growth
 - spontaneous formation of TiO$_2$ (few atomic layers) on Titanium surface
 - above 600°C: partial transformation of TiO$_2$ to TiO / TiO$_2$ / Ti$_2$O$_3$ (Ti$^{4+}$, Ti$^{3+}$, Ti$^{2+}$, O$^{2-}$)
 - vacancy formation in Oxygen sub-lattice of the oxide layer
 - enhanced Oxygen diffusion through oxide layer to oxide-metal interface

Titanium with Niobium addition
- parabolic oxide layer growth
 - Niobium compensates lattice mismatch in oxide layer: Nb$_2$O$_5$ (Nb$^{5+}$, O$^{2-}$)
 - Ti$^{3+}$ and Nb$^{5+}$ lead to Me$^{8+}$-configuration in metal sub-lattice, in addition: formation of Nb$_2$O$_5$
VDM Exhaust Grade Ti-X
The role of hafnium

- 15 compositions investigated (flow curves, oxidation at 800°C, microstructure and hardness)
- results:
 - increasing Hf contents lead to accelerated oxidation
 - 0.05% Nb ensures sufficient oxidation behaviour in Si-containing alloys
 - microstructure stabilisation by Hf_5Si_3 particles (detected by synchrotron radiation)
VDM Exhaust Grade Ti-X
Formation of Hf-Silicides (synchrotron analysis)

Ti 0.4Si 0.1Fe 0.05Nb 0.1Hf (P07 @ PETRA III, $\lambda = 0.012587$ nm)

- Ti 0.4Si 0.1Fe 0.05Nb 0.1Hf (cold rolled to 1.2 mm and recrystallisation annealed)
 - α-phase, lattice parameter slightly increased, very low amounts of Hf$_5$Si$_3$
VDM Exhaust Grade Ti-X
Oxidation behavior

oxidation experiments at 800°C

- all Ti 0.4Si 0.1Fe x*Nb y*Hf alloys show excellent oxidation resistance
VDM Exhaust Grade Ti-X
Industrial scale

- production of Ti 0.4Si 0.1Fe 0.05Nb 0.1Hf in industrial scale
 - 2 x vacuum arc remelting (VAR), ingot of approx. 3.5 tons
 - forging, hot and cold rolling (final thicknesses: 1.2 mm and 0.9 mm)
 - recrystallisation annealing
- microstructure and phase analyses, oxidation experiments
- Erichsen cupping, mechanical properties
VDM Exhaust Grade Ti-X
Mechanical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Ti 0.4Si 0.1Fe 0.05Nb 0.1Hf cold rolled, annealed thickness: 1.2 mm</th>
<th>Ti 0.4Si 0.1Fe 0.05Nb 0.1Hf cold rolled, annealed thickness: 0.9 mm</th>
<th>CP-Ti Grade 1S cold rolled, annealed thickness: 0.5 - 0.7 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>alloy composition</td>
<td>Ti 0.4Si 0.1Fe 0.05Nb 0.1Hf</td>
<td>Ti 0.4Si 0.1Fe 0.05Nb 0.1Hf</td>
<td>CP-Ti Grade 1S</td>
</tr>
<tr>
<td>property</td>
<td>RD</td>
<td>RD</td>
<td>RD</td>
</tr>
<tr>
<td>yield strength YTS [MPa]</td>
<td>340</td>
<td>340</td>
<td>200</td>
</tr>
<tr>
<td>ultimate tensile strength UTS [MPa]</td>
<td>440</td>
<td>450</td>
<td>320</td>
</tr>
<tr>
<td>elongation at rupture A50 [%]</td>
<td>33</td>
<td>30¹)</td>
<td>49</td>
</tr>
<tr>
<td>yield strength YTS [MPa]</td>
<td>400</td>
<td>410</td>
<td>230</td>
</tr>
<tr>
<td>ultimate tensile strength UTS [MPa]</td>
<td>440</td>
<td>450</td>
<td>330</td>
</tr>
<tr>
<td>elongation at rupture A50 [%]</td>
<td>33</td>
<td>31¹)</td>
<td>38</td>
</tr>
<tr>
<td>Erichsen cupping depth [mm]</td>
<td>11.6</td>
<td>11.3</td>
<td>11.3</td>
</tr>
</tbody>
</table>

- **Ti 0.4Si 0.1Fe 0.05Nb 0.1Hf (cold rolled to 1.2 mm / 0.9 mm and annealed)**
 - good workability at room temperature
 - Hf₅Si₃ precipitations do not influence the deformation characteristics
 ¹) A80
VDM Exhaust Grade Ti-X
Microstructure, strip

- Ti 0.4Si 0.1Fe 0.05Nb 0.1Hf (cold rolled to 1.2 mm and recrystallisation annealed)
 - homogeneous, fine-grained microstructure
 - equiaxed α-grains in rolling and transverse direction
 - average grain size: 23 µm (ASTM E112, grain size number 8)
VDM Exhaust Grade Ti-X
Oxidation behavior of the strip

Virgin material

ASTM grain size No: 8 – ca. 23 µm

200 h / 800°C

ASTM grain size No: 5 – 6, 45 – 65 µm

cross section
VDM Exhaust Grade Ti-X

Summary

- Based on CP-Titanium Ti grade 1S (soft grade)
- Improved oxidation resistance due to a concerted addition of silicon, iron and niobium
- Microstructure stability by the precipitation of hafnium-silicides mainly on the grain boundaries
- Good cold-deformation properties
- Production route is the same as CP titanium
- Alloy composition: Ti – 0.4Si – 0.1Fe – 0.05Nb – 0.1Hf
- Ready for application in exhaust systems of planes or cars at 800°C and above
- Strip material (thickness 0.9 mm and 1.2 mm, width 750 mm) available for application/sampling
- Smaller thicknesses ready for rolling
Thank you for your attention!