TITANIUM SCIENCE AND TECHNOLOGY
1968—Refractory Metal Alloys: Metallurgy and Technology
 Edited by I. Machlin, R. T. Begley, and E. D. Weisert

1969—Research in Dental and Medical Materials
 Edited by Edward Korostoff

1969—Developments in the Structural Chemistry of Alloy Phases
 Edited by B. C. Giessen

1970—Corrosion by Liquid Metals
 Edited by J. E. Draley and J. R. Weeks

1971—Metal Forming: Interaction Between Theory and Practice
 Edited by A. L. Hoffmanner

1973—Titanium Science and Technology (4 Volumes)
 Edited by R. I. Jaffee and H. M. Burte
A Publication of The Metallurgical Society of AIME

TITANIUM SCIENCE AND TECHNOLOGY

Proceedings of the Second International Conference organized by The Metallurgical Society of AIME, the American Society for Metals, and the Institute of Metals in association with the Academy of Sciences of the USSR and the Japan Institute of Metals, held at the Kresge Auditorium, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 2-5, 1972

Edited by
R. I. Jaffee
Battelle-Columbus Laboratories
Columbus, Ohio

and

H. M. Burte
Air Force Materials Laboratory
Wright-Patterson Air Force Base, Ohio

VOLUME 1

PLENUM PRESS • NEW YORK – LONDON • 1973
To

DR. MAX HANSEN,

whose pioneering work in the physical metallurgy of titanium in the United States and Germany truly exemplifies the international nature of the research on titanium, which is described in these proceedings circa 1972.
PREFACE

The Second International Conference on Titanium was held in Cambridge, Massachusetts, four years after the inaugural conference in London in 1968. There were many similarities and differences between the two conferences and the status of the titanium industry at the time.

In 1968 the production of titanium in the United States was close to its historic peak of about 30 million pounds of mill products. Projections of applications in commercial and military aerospace and the civilian economy indicated continuation of the ten-year growth pattern of about 20 percent annually. A great feeling of enthusiasm pervaded that conference.

In 1972 this growth pattern for titanium had been interrupted for at least two years, and the industry is now in a decline expected to be at least 20 percent off of its peak year. The U.S. supersonic transport, largely to be built of titanium, had been cancelled. The U.K.-French and Soviet supersonic transports were designed and constructed to operate at about Mach 2, to eliminate the requirement for extensive use of titanium. The largest titanium market, commercial aircraft, was in a period of consolidation after the rapid expansion in the 1960's.

The organizers for the Second International Conference seriously considered whether it was opportune to have a second conference in this period of decline in the industry. With considerable trepidation, calls for papers were sent out. We were amazed and delighted to find a tremendous outpouring of offers of papers from all parts of the world. Most of these papers reported new research and development, many applied to new areas of application not covered in the London Conference. After screening, a core of close to 200 worthwhile papers were accepted for the conference. Despite the poor economic condition of the industry, and shortages of travel funds, the attendance at the conference was also a pleasant surprise. About 350 participants from all over the world attended the conference, roughly the same number who participated in the original London Conference. We must conclude that the charisma of titanium has remained intact.

Other differences apparent to us between London and Cambridge were greater concern for economics in production and utilization, a search for new areas of application, particularly for nonaerospace uses, and an increasing attention to reliability as the
aerospace applications became more demanding and titanium was utilized in airframes and primary aircraft structures instead of primarily in engine applications.

The scientific aspects of titanium research continued at the high level of quality displayed at the London Conference. We now see how to better relate the structure of titanium in its various aspects from electronic structure, dislocation structure, and grain structure to mechanical behavior and other properties. We saw examples of how this scientific knowledge was put to practical use. This is a new subdivision of titanium science and technology, metallurgical synthesis, which relates the creation of appropriate structures to achieve desired properties.

The trend for titanium application to move from military to civilian, from aerospace to terrestrial, and from high cost to low cost has continued apace. In Europe and Japan, it is apparent that these trends, particularly in nonaerospace applications, have proceeded further than in the United States, but the U.S. market trend should follow a similar course if reductions in the cost of titanium continue. At present we view this as an extremely favorable factor for turning the utilization of titanium upward again. We are not discouraged about the future application of titanium, including aerospace, and believe the current economic decline of titanium is temporary and related to a depression in the total aerospace utilization of materials.

To stimulate the transfer to actual use of the rapidly growing body of scientific knowledge on titanium and to provide the information necessary to support the reliable use of titanium in new applications, we felt that particular attention during the conference should be paid to coupling between those working in the science with those working in practical applications. Thus, the entire spectrum from basic research to service experience was covered, and many speakers addressed themselves to various aspects of this coupling.

In order to handle the large number of papers in a four-day period, it was necessary for us again to use the rapporteurial system of presentation. To stimulate discussion and interplay among the attendees at the Conference, we added for each session the presentation of a critical review of the field by an invited lecturer who was well-known for his work on titanium. After the critical review and rapporteur's presentation, the authors were given an opportunity to add further comments and clarification of the highlights of their papers. The remaining time for each session was devoted to discussion of the overall topic led by two co-chairmen. Sense reports on this discussion follow each of the sections of the proceedings. We think they are well worth reading to gain an idea of the interplay that went on during the Conference itself.
The Organizing Committee is listed below:

Mr. Stanley Abkowitz
General Chairman

Dr. Harris M. Burte
U.S. Technical Co-Chairman

Prof. Nicholas J. Grant
U.S. Technical Co-Chairman

Mrs. M.K. McQuillan
U.K. Technical Co-Chairman

Dr. H. Kimura
Japan Technical Co-Chairman

Prof. S.G. Glazunov
U.S.S.R. Technical Co-Chairman

Dr. Robert I. Jaffee
Publications Chairman

The Metallurgical Society of AIME
& American Society for Metals

The Metallurgical Society of AIME

American Society for Metals

Institute of Metals

Japan Institute of Metals

Academy of Sciences U.S.S.R.

The Metallurgical Society of AIME

Unfortunately, Prof. Glazunov was not able to attend. In his place Dr. L. Petrova served ably as head of the Soviet delegation. We also wish to thank the Titanium Committee of The Metallurgical Society of AIME who assisted us in the review of abstracts and organization of the program. These included:

S. Abkowitz
H. Margolin

H.B. Bomberger
R.E. Newcomer

J.D. Boyd
I. Perlmutter

R. Broadwell
C.M. Pierce

E.W. Collings
T. Redden

F.A. Crossley
R.A. Sprague

H.L. Gegel
B.V. Whiteson

R.F. Malone
J.C. Williams

All of these also had active roles in the conduct of the Conference as authors, co-chairmen, or rapporteurs.

Thanks are due to Mr. Abkowitz and Prof. Grant for handling the arrangements in Cambridge for the Conference and to Dr. M.K. McQuillan for coordinating the overseas program input and participants. The Titanium Conference was truly international in that there were papers from many countries represented.
In particular we wish to thank the rapporteurs who did a notable job of introducing often as many as 15-20 papers in a particular session, interrelating one paper with the other and commenting on its relationship to the overall field. Much of the success of the ensuing discussion must be attributed to these efforts.

We wish to comment on the dedication of this book to Dr. Max Hansen. This course follows the tradition established in the first proceedings, which were dedicated to Dr. Wilhelm Kroll as the father of titanium. We believe Max Hansen also embodies the international character of titanium research and development. He was trained in metallurgy in Germany. His work on titanium originated in the United States at the Armour Research Foundation (presently the Illinois Institute of Technology Research Institute, IITRI). Later he returned to Germany where he instituted extensive titanium research at the Metallgesellschaft, A.G. in Frankfurt-Main, Germany. Max Hansen is now retired in Kronberg, Germany.

Lastly, we wish to express our hope that there will be a third and continuing international conferences on titanium held every four years to record and stimulate progress on this remarkable metal.
CONTENTS

Preface ... vii
 R. I. Jaffee and H. M. Burte

V O L U M E I

SECTION I. INTRODUCTORY PAPERS

Introductory Remarks .. 5
 N. E. Promisel
 L. Haworth

Keynote Address ... 11
 A. E. Gorum and R. Colton

Banquet Address ... 21
 E. R. Rowley

SECTION II. CURRENT USES AND FUTURE POSSIBILITIES,
INCLUDING ECONOMICS AND MATERIALS POLICY

Critical Review ... 31
 W. W. Minkler

Manufacturing Exercise Involved in the Redesign
of the Hawker Siddeley Trident (Tri-Jet)
 Fuselage ... 45
 J. Fielding

B-1 Cost/Weight Trade Methodology 57
 R. E. Edmonson and W. A. Reinsch

Design and Development Support for Critical
Helicopter Applications in Ti-6Al-4V Alloy 69
 P. -R. Wedden and F. Liard
Flatt Rolled Beta Titanium Alloys for Airframe Application
G. A. Lenning and W. H. Heil

Applications of the High Strength Alloy Ti-4Al-4Mo-2Sn-0.5Si in European Aircraft Projects
R. M. Duncan and R. T. J. Hubbard

Titanium! The Bridge to Composites
L. R. Sanders, R. S. Baxter, and R. J. Juergens

Titanium Castings for Marine Propellers
A. G. S. Morton and I. R. Lane, Jr.

Titanium Tubing and Fittings for Deep Submergence Hydraulic Systems
M. K. Eckhardt

Some Technical Considerations on the Use of Titanium Condenser Tubing in Public Utility Power Generation Turbines
C. F. Hanson

Titanium Corrosion in Distillation Columns
L. G. Posey, Jr.

The Role of Titanium in Anodizing and Electroplating
K. Rüdinger

Recent Development in the Application of Titanium for Motorcars
K. Rüdinger and A. Ismer

Discussion
M. K. McQuillan, N. J. Grant, and J. D. Mountford

SECTION III. WINNING AND REFINING

Critical Review
M. Hoch

Murso Process for Producing Rutile Substitute
H. N. Sinha

Reduction of Ilmenite and Ilmenite Ores
D. Poggi, G. G. Charette, and M. Rigaud
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of Titanium Powders Production</td>
<td>261</td>
</tr>
<tr>
<td>V. S. Ustinov, R. K. Ognev, and U. G. Olesov</td>
<td></td>
</tr>
<tr>
<td>The Interaction of Titanium with Refractory Oxides</td>
<td>271</td>
</tr>
<tr>
<td>S. R. Lyon, S. Inouye, C. A. Alexander, and D. E. Niesz</td>
<td></td>
</tr>
<tr>
<td>Potential Extractive Processes for Titanium</td>
<td>285</td>
</tr>
<tr>
<td>Scrap Reclamation</td>
<td></td>
</tr>
<tr>
<td>J. Glasser</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>299</td>
</tr>
<tr>
<td>S. Abkowitz, Y. Okura, and E. T. Hayes</td>
<td></td>
</tr>
</tbody>
</table>

SECTION IV. CONSOLIDATION, PRIMARY AND SECONDARY FABRICATION

Critical Review	303
H. D. Kessler	
The Effect of the Rate of Filling Moulds on the Solidification of Titanium-Alloy Ingots	319
V. I. Dobatkin and M. I. Musatov	
Durarc® Process for Melting and Casting Titanium	331
A. R. Vaia and R. R. Akers	
Some New Results about Casting of Titanium in the Electron Beam Melting Furnace	343
H. Stephan	
Study of Residual Stresses in Cast Titanium Alloys	353
S. G. Glasunov and K. K. Yassinksy	
Titanium Powder Metallurgy by Decomposition	365
Sintering of the Hydride	
J. Greenspan, T. J. Rizzitano, and E. Scala	
Titanium P/M Preforms, Parts and Composites	381
S. Abkowitz	
Hot Isostatic Pressing of Titanium 6Al-4V	399
R. F. Geisendorfer, R. J. Sajdak, and G. H. Harth	
Lubrication of Titanium Alloys under Conditions of Bulk Plastic Deformation	419
J. T. Berry, M. H. Pope, and N. Misra	
The Influence of Process Variables on the Pressure Requirements for the Extrusion of Titanium Alloy Rods
F. J. Gurney and A. T. Male

Titanium Precision Forgings
D. K. Fix

Manufacturing Method and Mechanical Properties of Large Annular Forgings of Two-Phase Titanium Alloy
N. A. Grekov, G. I. Arkovenko, M. G. Zlatkin, and T. N. Sazonova

Influence of Hot Working on the Properties of the Ti-6Al-4V Alloy with Special Regard to Heavy Sections
A. Gerhardt and W. Knorr

The Manufacturing of Aircraft-Quality Hydraulic Tubing with the Ti-3Al-8V-6Cr-4Mo-4Zr Alloy
J. M. Olexa, L. J. Bartlo, and H. B. Bomberger

Procedures and Precautions in Machining Titanium Alloys
N. Zlatin and M. Field

Smelting of Primary Ingots and their Remelting in Plasma-Arc Furnaces with Cooled Molds
B. E. Paton and V. I. Lakomsky

Discussion
V. Lakomsky, H. A. Johnson, and R. A. Sprague

SECTION V. JOINING, QUALITY ASSURANCE AND INSPECTION

Critical Review
R. H. Wedge

Metallurgical and Technological Features of Titanium Alloy Welding when Using Fluxes
S. M. Gurevitch, V. N. Zamkov, and N. A. Kushnirenko

Microstructure Control in Welds of the Ti-6Al-6V-2Sn Alloy
R. P. Simpson, C. M. Pierce, and K. C. Wu
CONTENTS

Factors Affecting the Ductility and Microstructure of Ti-6Al-6V-2Sn Titanium Alloy Weldments 573
M. J. Ball

Electron Beam Welding of Ti-6Al-6V-2Sn Plate 585
J. C. Chang

Weld Optimisation and Fatigue Tests on Low Voltage Electron Beam Welded 2 in (51mm) Thick Ti-6Al-4V Alloy 601
C. A. Stubbington and J. T. Ballett

Some Fatigue Properties of Welds in Two Titanium Sheet Alloys 615
W. O. Dinsdale and M. H. Scott

Pressure Requirements for Diffusion Bonding Titanium 625
C. H. Hamilton

Fatigue Behavior of Diffusion Bonded Ti-6Al-4V Having Very Small Defects 649
A. Gunderson, H. L. Gegen, and S. R. Lyon

Correlation of Diffusion Bonded Ti-6Al-4V Properties with Acoustic Emission, Pulse-Echo and Fractographic Data 665
J. H. Ashton, J. A. Regalbuto, and Z. R. Wolanski

Failure Experience with and Failure Anticipation in Titanium Components 679
B. Cohen, H. M. Burte, and D. M. Forney, Jr.

Effects of Ti-6Al-4V Alloy Metallurgical Structures on Ultrasonic Response Characteristics 693
F. R. Billman and F. F. Rudolph

The Effects of Stress on the Detection of Fatigue Cracks by Ultrasonic Technique 707
B. G. W. Yee

Ultrasonic Inspection of Titanium Airframe Components 717
K. L. Kremer, R. J. Lord, and R. J. Roehrs

Non-Destructive Inspection of Titanium Jet Engine Disks 733
F. J. Vicki

Measurement by X-Ray Diffraction of Macro-Stresses and Micro-Stresses in Titanium and a Titanium Alloy 743
B. Singh, D. Lewis, J. M. Towner, M. B. Waldron, and J. R. Lee
Nondestructive Detection of Hydrides and Alpha-Case in Titanium Alloys 755
D. J. Hagemaier

Discussion 767
H. M. Burte, G. Sertour, and B. V. Whiteson

SECTION VI. PHYSICAL PROPERTIES, ELECTRONIC STRUCTURE, PHASE STABILITY, PHASE EQUILIBRIA

Critical Review 773
L. Kaufman and H. Nesor

Some Relationships between the Electronic and Mechanical Properties of Ti Alloys, Discussed from the Standpoint of Fundamental Alloy Theory 801
E. W. Collings, J. E. Enderby, H. L. Gegel, and J. C. Ho

Physics of Titanium Alloys - I: Alloying and Microstructural Effects in the Superconductivity of Ti-Mo 815
J. C. Ho and E. W. Collings

Physics of Titanium Alloys - II: Fermi Density-of-States Properties, and Phase Stability of Ti-Al and Ti-Mo 831
E. W. Collings, J. C. Ho, and R. I. Jaffee

Relationships between Microstructure, Superconductivity and Mechanical Properties of Ti-6Al-4V 843
E. G. Wolff, R. Lepper, and G. J. Mills

Influence of Pinning Forces of Titanium-Niobium Base Alloys on the Critical Current up to 10 Tesla 859
R. Löhberg, W. Heller, and U. Zwicker

Peculiarities of Changes in Elastic Properties of Titanium Martensite 871
S. G. Fedotov
CONTENTS

Internal Friction Studies in Titanium and Titanium Base Alpha and Beta Alloys 883
S. Mishra and M. K. Asundi

Investigation of Lattice Defects, Electronic Structure, and Diffusion Mobility in Titanium 905
L. G. Korneluk, L. M. Mirsky, and B. S. Bokshtein

Interaction of Oxygen and Hydrogen in Titanium 915
A. D. McQuillan

Thermodynamics of α-Stabilized Ti-X-Y Systems 923
H. L. Gegel and M. Hoch

The Titanium-Aluminum-Gallium System 935
M. Hoch, T. Sakai, J. J. Krupowicz, and M. Delahanty

The Investigation of Phase Equilibrium and Some Properties of Ti-Al-Zr-Mo-Fe Alloys 951
I. I. Kornilov, M. A. Volkova, and T. T. Nartova

Discussion 959
A. D. McQuillan, H. Margolin, and E. W. Collings

SECTION VII a and b. DEFORMATION AND FRACTURE

Critical Review 969
H. Conrad, M. Doner, and B. de Meester

Part A. Deformation

The Stability of <c+a> Dislocations in Hexagonal Crystals 1009
L. J. Teutonico

Tensile Stress-Strain Curves of Cold Worked Polycrystalline Titanium 1021
A. W. Bowen and P. G. Partridge

The Effects of Grain Size Refinement on the Mechanical Properties of Unalloyed Titanium 1033
R. L. Jones

The Deformation of α-Phase Titanium 1049
N. E. Paton, J. C. Williams, and G. P. Rauscher
Slip in Titanium-Aluminum Alloys Containing Small Ti$_3$Al Precipitates .. 1071
J. D. Boyd and R. G. Hoagland

The Low Temperature Deformation Behaviour of the Intermetallic Compound Ti$_3$Sn .. 1085
P. J. Jones and J. W. Edington

Asymmetry of Slip in Beta Ti-V Single Crystals .. 1097
D. A. Koss and J. C. Chesnutt

A Study of the Nature of the Ductile-Brittle Transition in Beta-Titanium Alloys .. 1109
I. V. Gorynin, B. B. Chechulin, S. S. Ushkov, and O. S. Belova

Titanium Alloys' Behaviour Under Various Loading Conditions .. 1119
I. N. Bogatchev and M. A. Dyakova

Thermally Activated Deformation of Ti-N Alloys .. 1131
K. Okazaki, M. Momochi, and H. Conrad

Thermally Activated Deformation in Ti 1% Si and Ti 5% Zr 1% Si .. 1143
H. M. Flower, P. R. Swann, and D. R. F. West

Superplasticity in Large Grained Beta Titanium Alloys .. 1155
P. Griffiths and C. Hammond

Twinning and Texture Transitions in Titanium Solid-Solution Alloys .. 1169
F. R. Larson, A. Zarkades, and D. H. Avery

Cold-Rolling Texture Development in Titanium and Titanium-Aluminum Alloys .. 1187
D. R. Thornburg and H. R. Piehler

Preferred Orientation in Titanium Alloy Thin Foils .. 1199
P. K. Koh

Discussion .. 1215
I. Perlmutter, U. Zwicker, and J. D. Boyd

Part B. Fatigue and Fracture

Fatigue Mechanisms in Titanium .. 1219
D. E. MacDonald and W. A. Wood
The Stress-Response of Cyclically-Deformed Alpha-Titanium
J. I. Dickson, J. P. Owens, and A. Plumtree

Some Observations on Fatigue Crack Growth in Alpha-Titanium
J. L. Robinson and C. J. Beevers

High Cycle Fatigue Properties of Titanium in Aircraft Application
W. J. Crichlow and T. Lunde

The Effect of Testing Direction on the Fatigue and Tensile Properties of a Ti-6Al-4V Bar
A. W. Bowen

The Effect of Section Size on the Fatigue Properties of Ti-6Al-4V Bars
C. A. Stubbington and A. W. Bowen

The Effect of Rolling Texture on the Fracture Mechanics Properties of Ti-6Al-2Sn-4Zr-6Mo
M. J. Harrigan, A. W. Sommer, P. G. Reimers, and G. A. Alers

Effect of Texture on the Charpy Impact Energy of Some Titanium Alloy Plate
A. Zarkades and F. R. Larson

Evaluation of Anisotropy in Titanium Sheet by Knoop Hardness Measurements
R. A. Fishburn and W. T. Roberts

The Texture Hardening of Titanium and Its Alloy Sheets
A. Hasegawa, T. Nishimura, and S. Ohtani

The Relationship between Crack Propagation Characteristics and Fracture Toughness in α+β Titanium Alloys
I. W. Hall and C. Hammond

The Fracture Toughness of 3 Ti Alloys
R. Chait and T. S. DeSisto

A Characterization of the Fracture Resistance of Thick-Section Titanium Alloys
R. W. Judy, Jr., C. N. Freed, and R. J. Goode
Plane Stress Fracture Resistance of High Strength Titanium Alloy Sheet
A. M. Sullivan, J. Stoop, and C. N. Freed

Discussion
R. E. Reed-Hill, H. Kimura, and A. C. Barber

VOLUME 3

SECTION VIII. KINETICS AND PHASE TRANSFORMATIONS

Critical Review
J. C. Williams

Decomposition of Beta-Solid Solution in Beta-Titanium Alloys on Ageing
N. V. Ageyev, L. V. Petrova, and L. P. Grankova

The Effect of Molybdenum and Oxygen on Phase Transformations in Titanium-Zirconium Alloys
H. M. Flower and P. R. Swann

The Effect of Gas Impurities, Cold Deformation and Other Factors on the Nature and Kinetics of Beta-Phase Decomposition in High-Alloyed Titanium Alloys
I. S. Polkin and O. V. Kasparova

Reversion at the Ageing of Titanium Alloys
L. P. Luzhnikow and V. M. Novikowa

Some Fundamental Studies on the Phase Transformation from Beta Phase to Alpha Phase in Titanium Alloys
H. Ikawa, S. Shin, M. Miyagi, and M. Morikawa

Stability of Omega-Phase in a Ti-Zr-O System
N. V. Ageev and M. S. Model

The Structure and Properties of Quenched Titanium Binary Alloys
A. B. Kolachev and V. S. Liasotskaya

Zonal Dislocations for Twinning and Martensite Formation in Titanium
S. Mendelson
Substructure of Titanium-Zirconium Martensites
S. Banerjee, S. J. Vijayakar, and R. Krishnan

Isothermal Transformations of Ti 6%Al 6%V 2%Sn
Alloy after Preheating in the (α-β) Range
B. Hocheid, C. Fontalirand, C. Beauvais,
C. Roux, and J. P. Fidelle

Alloy Partitioning in Beta III and Effect on
Aging Characteristics
F. H. Froes, J. M. Capenos, and M. G. H. Wells

On the Quenched Structure and Aging Process of
Ti-8\text{wt}\% Al Alloy
H. Sasano, T. Tsujimoto, and H. Kimura

Grain Growth Kinetics in Ti-N Alloys
K. Okazaki, M. Momochi, and H. Conrad

Discussion
J. Nutting, J. G. Parr, and F. A. Crossley

SECTION IX. METALLURGICAL SYNTHESIS

Critical Review
R. I. Jaffee

Digital Computer Analysis of α-β Titanium Alloy
Microstructure
P. J. Caulfield, L. A. Jacobson, and M. E. Rosenblum

Yield Strength, Microstructure and Fracture Toughness
H. Margolin, M. A. Greenfield, and I. Greenhut

The Effects of Microstructure and Composition on
the Fracture Toughness of Titanium Alloys
D. H. Rogers

The Effect of Microstructure on the Control of
Mechanical Properties in Alpha-Beta
Titanium Alloys
M. A. Greenfield, C. M. Pierce, and J. A. Hall

Dislocation Network Formation During Hydrostatic
Extrusion
G. A. Sargent, S. Agrawal, R. J. DeAngelis,
and H. Conrad
The Influence of Controlled Processing on the Yield Strength and Toughness Properties of Titanium Alloy Extrusions
A. M. Adair, F. J. Gurney, and A. T. Male
1755

The Effects of Extrusion Process Variables on the Structure and Properties of Titanium Alloys
F. J. Gurney and A. T. Male
1769

Influence of Forging Conditions on the Fatigue Behaviour of Ti-6Al-4V
J. Broichhausen and H. van Kann
1785

The Influence of Thermomechanical Processing on the Fatigue Behavior of Extruded Beta III Titanium
A. M. Adair, W. H. Reimann, and R. F. Klinger
1801

Microstructures and Mechanical Properties of Thermo-Mechanically Treated High-Strength Beta-Titanium Alloys
L. A. Rosales, K. Ono, A. W. Sommer, and L. A. Lee
1813

Thermomechanical Treatment of a β Titanium Alloy
D. H. Avery, J. B. W. Greene, T. C. Reiley, and R. M. Wallace
1829

Effect of the Thermomechanical Treatment on the Corrosion Resistance of Titanium Alloys
F. N. Tavadze, Z. Kherodinashvili, and S. A. Asanov
1841

The Age Hardening Characteristics and Mechanical Properties in a Titanium Alloy Ti-2Cu-1Zr
T. Nishimura, Y. Sugimura, and S. Ohtani
1853

Effects of the Dislocation Nucleation Around Rare-Earth Oxides in the Deformation of Titanium-Rare Earth Alloys
H. Kayano, T. Amano, and S. Yajima
1869

Discussion
H. L. Gegel, L. A. Petrova, and M. A. Greenfield
1881

SECTION X. LOW TO INTERMEDIATE TEMPERATURE ALLOYS

Critical Review
R. T. J. Hubbard
1887
CONTENTS

Dendrite Morphology and Microsegregation in Titanium Base Alloys 1893
J. I. Nurminen and H. D. Brody

Fundamentals of Cast Titanium Alloys Formulation 1915
O. N. Magnitzkii

Development of Cold Hardenable Titanium Alloys for the "Concorde" Supersonic Jet 1929
E. Alhéritière, C. Drapier, R. Molinier, and R. Syre

The Characteristics of Ti-Mo Beta Titanium Alloy 1945
S. Ohtani, M. Nishigaki, and T. Nishimura

Properties of Two Beta Titanium Alloys after Aging at Several Different Temperatures 1957
J. W. Hagemeyer and D. E. Gordon

Metallurgical Characteristics and Mechanical Properties of Beta III, a Heat-Treatable Beta Titanium Alloy 1969
V. C. Petersen, F. H. Froes, and R. F. Malone

S. R. Seagle, G. S. Hall, and H. B. Bomberger

Deep Hardenable Titanium Alloys for Large Airframe Elements 1993
E. Bohanek

The Effect of Heat Treatment on the Mechanical Properties of the Alloy Ti-8Al-1Mo-1V 2009
P. J. Fopiano and C. F. Hickey, Jr.

Fracture Toughness of Transage 129 Alloy, Ti-2Al-11V-2Sn-11Zr 2025

New Features in the Heat Treatment of Ti-6Al-6V-2Sn-Cu-Fe Titanium Alloy 2041
E. Alhéritière, J. Moisan, J. Blanchet, R. Molinier, and R. Syre

Heat Treatment Study of Beta Extruded Titanium Alloy Ti-6Al-6V-2Sn 2053
R. J. Sajdak, R. F. Geisendorfer, J. A. Hall, and C. M. Pierce
The Effect of Microstructure on the Low Cycle
Fatigue Behavior of Ti-6Al-4V 2069
R. A. Sprague, D. L. Ruckle, and M. P. Smith

Improvements in the Fatigue Strength of
Ti-6Al-4V Forgings 2081
J. J. Lucas

The Effect of α+β Working on the Fatigue
and Tensile Properties of Ti-6Al-4V Bars 2097
A. W. Bowen and C. A. Stubbington

The Mechanical Properties of Case-Hardened
Titanium Alloys 2109
J. L. Phillips and J. W. Martin

Discussion 2121
L. Seraphin, H. J. Siegel, and C. M. Pierce

VOLUME 4

SECTION XI. HIGH TEMPERATURE ALLOYS

Critical Review 2127
H. W. Rosenberg

Improvement in High-Temperature Tensile and
Creep Properties of Titanium Alloys 2141
G. S. Hall, S. R. Seagle, and H. B. Bomberger

Properties and Structure of Binary and Ternary
α-Titanium-Base Alloys 2151
O. P. Solonina and V. P. Kuraeva

The Mechanisms by which Certain Solute Elements
Improve the Creep Strength of Alpha Titanium 2167
M. Kehoe and R. W. Broomfield

Synthesis of a High Temperature Near Alpha
Titanium Alloy 2179
H. L. Gegel and S. Fujishiro

Titanium for High Temperature Applications 2195
R. D. French

Ductility of Ti-Al-Ga Alloys 2207
M. J. Godden and W. N. Roberts
CONTENTS

A New Titanium Alloy for Elevated Temperature Application ... 2219
W. M. Parris and H. A. Russell

Heat-Treatment and Mechanical Properties of Ti-6Al-2Co Alloy ... 2227
H. Kimura, S. Komori, H. Sasano, and O. Nakano

Computerized Parametric Analyses of Titanium Alloy Creep-Rupture Data 2243
P. K. Raut and W. R. Clough

Creep of β-Titanium Alloys .. 2255
A. H. Clauer and B. A. Wilcox

Dynamic Creep of Titanium Alloy with 1.5 w/o Mn and 3% Al in High-Velocity Air Streams 2269
I. N. Bogatchov, U. G. Vekslcr, and V. G. Sorokin

Discussion .. 2279
E. F. Bradley, J. E. Coyne, and R. Broadweil

SECTION XII. TITANIUM MATRIX COMPOSITES

Critical Review .. 2283
M. Herman

Compatible Alloys for Titanium Matrix Composites .. 2285
A. G. Metcalfe and M. J. Klein

Interfacial Reactions in Potential Titanium Matrix Composites 2299
J. Kennedy and G. Geschwind

Technological Parameters of Explosion-Bonded Titanium Cladding on Steel 2313
K. Rüdinger

The Deformation and Fracture of Borsic® Reinforced Titanium Matrix Composites 2333
K. M. Prewo and K. G. Kreider

Development of Boron Carbide-Titanium Laminar Composites 2347
M. J. Hordon

Discussion .. 2359
R. J. E. Glenny, L. P. Jahnke, and R. E. Newcomer
SECTION XIII. GENERAL CORROSION AND OXIDATION, COATINGS

Critical Review .. 2363
J. B. Cotton

Features of the Corrosion Behavior of Titanium
Alloys in Aggressive Media of Different
Processes ... 2373
S. F. Vajenin, O. M. Shapovalova, and
N. A. Pampushko

Pitting Corrosion of Titanium in High Temperature
Halide Solutions 2383
T. Koizumi and S. Furuya

The Role of Multi-Valent Metal Ions in Suppressing
Crevice Corrosion of Titanium 2395
L. C. Covington

Anodic Oxidation of Titanium in Aqueous Solutions 2405
P. C. S. Hayfield

Anodic Protection of Titanium Plant 2419
B. H. Hanson

The Effect of Ni on the Electrochemical Behavior
of Ti-Ni Alloys ... 2431
A. J. Sedriks, J. A. S. Green, and D. L. Novak

Corrosion of Titanium Alloys in Physiological
Solutions .. 2447
A. C. Fraker, A. W. Ruff, and M. P. Yeager

The Corrosion Behavior of Titanium Alloys in
Chloride Solutions: Materials for
Surgical Implants 2459
M. Levy, D. B. Dawson, G. N. Sklover, and
D. W. Seitz, Jr.

Fretting Resistant Coatings for Titanium Alloys 2475
D. J. Padberg

Wear- and Erosion-Resistant Coatings for
Titanium Alloys 2487
M. Levy and J. L. Morrossi

New Surface Treatments for Titanium 2501
R. H. Shoemaker
CONTENTS

Metallurgy of Nickel-Base Coatings on Titanium Alloys 2517

Joining Nickel to Titanium ... 2527
C. E. Ells, G. F. Taylor, and R. C. Mansey

Parameters of Oxygen Diffusion in Alpha- and Beta-Forms of Titanium 2535
D. V. Ignatov, M. S. Model, L. F. Sokyriansky, and A. Ya. Shinyaev

Structural and Kinetic Investigations into Oxidizability of Titanium and of Its Alloys, and Their Protection Against High-Temperature Gas Corrosion 2545
D. V. Ignatov, Z. I. Kornilova, and E. M. Lazarev

On the Scaling of Commercial Titanium Alloys 2555
K. Rüding and H. H. Weigand

Discussion ... 2573
T. F. Kearns, T. A. Taylor, and H. B. Bomberger

SECTION XIV. STRESS CORROSION AND HYDROGEN EMBRITTLEMENT

Critical Review ... 2577
M. J. Blackburn and W. H. Smyrl

The Possible Relationship Between Lewis Acid Sites on Titanium Oxide Surfaces and the Penetration of the Oxide Film by Chloride Ion .. 2611
P. Fugassi and E. G. Haney

Surface Contamination and Stress Corrosion Cracking of Weldments in 5% Al, 2.5% Sn Type Titanium Alloys 2617
C. Chassain, C. St. John, and P. R. Krahe

Hot-Salt Stress-Corrosion of Titanium Alloys as Related to Turbine Engine Operation ... 2627
H. R. Gray
The Effects of Alloy Composition on the Salt-Water Stress-Corrosion Susceptibility of Titanium-Aluminum-Base Alloys 2639
R. A. Wood, J. D. Boyd, and R. I. Jaffee

The Effect of Solution pH on the Saline Water Corrosion of Titanium Alloys 2655
A. C. Fraker and A. W. Ruff

The Stress Corrosion Cracking of Titanium in a Mixture of Methyl Alcohol and Hydrochloric Acid 2665
J. Spurrier and J. C. Scully

The Effect of Gas Impurities on the Mechanism and Kinetics of Delayed Failure of Titanium Alloys 2679
M. Kh. Shorshorov, V. N. Mescheryakov, and V. A. Matyushkin

A Study of Dislocation: Hydrogen Interaction in Titanium-Aluminum Alloys via Internal Friction Measurements 2693
P. P. Tung, A. W. Sommer, and K. Ono

Reversible Hydrogen Embrittlement of Titanium Alloys 2703
V. A. Livanov, B. A. Kolachev, R. M. Gabidullin, and A. A. Buhanova

Discussion 2719
J. C. Scully, R. H. Raring, and G. Kendall

Name Index 2723

Subject Index 2729