Surface processing of titanium alloy parts by intense electron beams

Dr. N. A. NOCHOVNAYA*, Prof. V. A. SHULOV**, Dr. V. I. ENGELKO***, Dr. G. MUELLER****, Dr. G. SCHUMACHER****, Eng. M. V. VINOGRADOV*****, Eng. A. F. LVOV*****

- *All-Russian Institute of Aviation Materials, Russia, 107005 Moscow, Radio str., 17.
- **Moscow Aviation Institute, Russia, 125871 Moscow, Volokolamskoye sh., 4.
- ***Institute of Electrophysical Apparatus, Russia, 189631 St. Peterburg, Metallostroy, Sovietskiy av. 1.
- ******Institute of Neutron Physics and Reactor Technique, Germany, Karlsruhe D-76021, Postfach 3640.
- *****Chernyshev Machine-Building Enterprise, Russia, 123362 Moscow, Vishnevaya str., 7.

ANNOTATION

This paper reviews researches investigating the application of intense pulsed electron beams (IPEBs) for the surface treatment of materials. The high-energy density ($w=1-50 \text{ J}\cdot\text{cm}^{-2}$) of these short-pulsed ($\tau=1-20 \text{ }\mu\text{s}$) beams (with diameter d=3-6 cm, and energies E=20-150 keV) makes them ideal in flash heating a target surface. IPEB surface irradiation induces rapid melt and solidification at up to $10^{10} \text{ K}\cdot\text{s}^{-1}$ causing defect layer formation, the producing non-equilibrium microstructures and surface smoothing. At high energy density the target surface is vaporized. It allows to achieve high values of the ablation rate (up to 4-5 μ m in a pulse) and to realized the recycling of aircraft engine components: compressor and turbine blades and disks. Advanced IPEB technologies for the surface modification and for the recycling of the compressor and turbine blades and disks from titanium refractory alloys (specifically the blades with resistant coatings from ZrN) are also described.

Key words: electron beam, titanium alloy, fatigue strength, oxidation resistance, chemical composition.

1. INTRODUCTION

Intense pulsed electron beam (IPEB) treatment is one of the most advanced methods for surface processing of metals and alloys [1-3]. It is conditioned by the possibility of carrying out high-speed melting, evaporation and solidification of surface layer materials. Furthermore, this method allows a record level of the operating characteristics to be achieved of some parts from steels, superalloys, ceramics etc. The present paper reviews the latest experimental data on IPEB treatment of the $\alpha+\beta$ (VT8M and VT9) and pseudo- α (VT18U, VT25U) titanium alloys and exhibits behaviour of irradiated samples and aircraft engine components (compressor blades) manufactured from these alloys.

2. EQUIPMENT

There are tow types of IPEB accelerators for surface modification in Russia: (ICE) low-energetic pulsed electron beam accelerator and (GESA) electron beam facility [4, 5]. The ICE installation permits to form and transport low-energetic IPEBs having the following parameters:

maximum energy of electrons in a pulse 12-20 keV; average energy of electrons per a pulse 6-20 keV; frequency of pulse running f=0.1-0.2 Hz; pulse duration τ =0.15-5 μ s; beam cross-section area S=5-50 cm²; inhomogeneity of energy density distribution across beam cross-section 5-15 %; efficiency of accumulated energy transfer into beam energy 30 %.

This accelerator was formed in Tomsk (1992) [4]. Three years ago the electron beam facility (GESA) for investigation of material surface modification was developed in St. Peterburg and Karlsruhe [5]. The main parts of this accelerator are the following: electron injector; high voltage generator (HVG) with a pulse duration control unit; focusing magnetic coils; drift channel; chamber for sample treatment; radiation protection; controlling unit. The electron injector consists of a high voltage insulator, a multipoint explosive emission cathode, a controlling grid, and an anode, forming a triode arrangement. The controlling grid is connected with the grounded anode through the special resistor. The latter allows the current magnitude of the electron beam to be controlled in a certain range without of the injector and to be created a sufficiently high electric field strength near the cathode surface at the beginning of the pulse, necessary for homogeneity of electron emission. As a source of electrons a multipoint explosive emission cathode with stabilized cathode plasma [5] is used in

GESA. The area of the cathode emissive surface is 700 cm². The HVG corresponds to the Marx scheme. It consists of four stages, which are artificial pulse forming lines, containing 8 cells with correcting networks. The duration of the flat part of the pulse is around 40 μs, the amplitude on a matched lead reaches 150 keV. The duration of the high voltage pulse τ, can be controlled by the pulse duration control unit with time increments of 1 μs. At the beginning of the pulse, the total voltage produced by HGV is applied to the cathode-grip gap, because the grid is grounded through the resistor. The latter ensures homogeneous excitation of the electron emission. The magnetic focusing system consisting of six coils provides formation, transport, and variation of the beam diameter in the range of 6-10 cm. Presently the electron beam of GESA has the following parameters: E=50-150 keV; w<50 J·cm⁻², power density on the sample - up to 2 MW·cm⁻². The pulse duration is controllable in the range of 5-40 τs in stops of 1 μs. Just that time in Russia there were undertaken the experiments on investigation of IPEB irradiation effect on physical and chemical state of surface layers and properties of titanium alloy parts; therefore, to the present moment a very limited for short of complete quantity of information, especially from the practical point of view, has been obtained.

3. THE EFFECT OF IRRADIARION ON THE PHYSICAL AND CHEMICAL STATE OF THE SURFACE LAYER

In [1-5] the results of complex investigation were presented concerning the chemical composition and the structure of near surface areas of titanium alloy parts and samples after IPEB treatment (gas turbine engine compressor blades from VT6, VT9, VT8M and VT25U titanium alloys). The irradiation of the targets was carried out using the ICE accelerator under the following conditions: E=20-30 keV; $\tau=0.7-2.5$ μs : w=1-5 J·cm⁻²). According to calculated data [6] at such irradiation regime an uniform surface melting must occur. Pulse numbers ranged from 5 to 100. Metallographic analysis results performed by authors [3, 6, 7] testify that during rapid quenching a badly amenable to an etching layer with thickness of 5-10 μ m is formed. This layer has microstructure which can be changed from globular to columnar one as a function of irradiating conditions (Fig. 1). The thickness of a molten layer is slightly increased with a rise of the pulse number. As a result of surface material melting, its roughness was decreased from 0.23-0.28 μ m to 0.05-0.10 μ m (Fig. 2). In [3, 6, 7] the experimental data of irradiated surfaces investigation show that as a result of rapid solidification from melt it takes place the following:

- considerable modification of the chemical composition of surface layers with thickness of h>200 nm (one
 can see in Fig. 3 that surface purification from carbon and oxygen impurities occurs; with an increase of
 the pulse number an uniformity improvement of Al, Mo, and Zr distributions across surface layer thickness
 is observed; in this case the Al concentration in near surface zone increases up to 15-20 at. % that is
 considerably higher in comparison with an primary state);
- modification of the phase composition in the surface layer with thickness of $\sim 10~\mu m$ (it is practically observed a total decomposition of β -phase and formation of a large amount of α -phase and α "-martensite phase, Table 1 and 2);
- formation of residual tensile stresses in the same layer that results in shifting X-ray lines to the side of smaller diffraction angles and in increasing microhardness values, especially visible at small loads (Table 3).

The formation of a great amount of microdefects having a shape of craters with the average diameter of 5-50 μ m and the depth of 0.5-2 μ m has been noted on the surface of targets at low values of the pulse number [6, 7] (Fig. 4). With a growth of the pulse number the amount of craters decreases and at n>40 their presence is not practically indicated. Irradiation-enhanced diffusion, sub-surface layer annealing, alloyed components mixing during frequent melting provide the formation of near surface area with the width of approximately 10 μ m, having a high uniformity of the surface condition; therefore, subsequent IPEB irradiation doesn't already result in crater formation.

In the main, these conclusions are correct for the titanium alloy samples irradiated by IPEBs in the GESA accelerator [5] (Fig. 4). The difference was observed only in the depth of remelting layer. It is showed that the thickness of modified layers reaches more than 20 μm if the irradiation is carried out using the GESA accelerator. In the main, these conclusions are correct for the titanium alloy samples irradiated by IPEBs in the GESA accelerator [5] (Fig. 4). The difference was observed only in the depth of remelting layer. It is showed that the thickness of modified layers reaches more than 20 μm if the irradiation is carried out using the GESA accelerator.

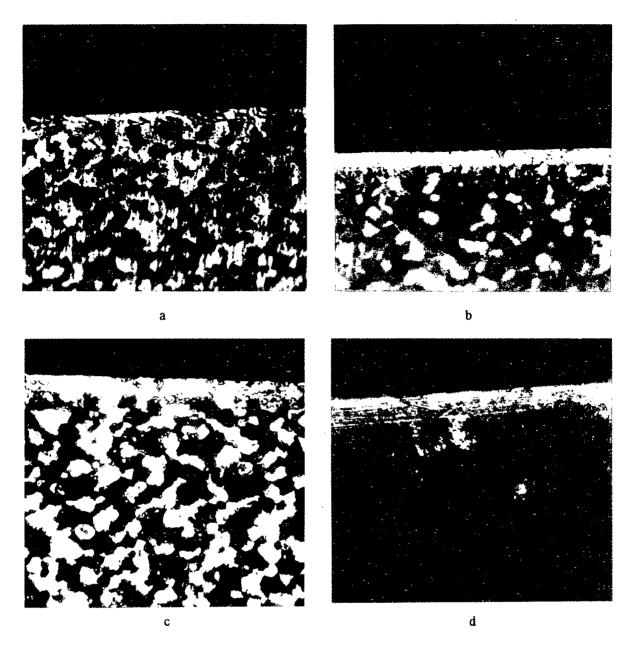


Figure 1. Effect of irradiation conditions on the surface layer structures of VT8M and VT25U titanium alloys: (a, b, c) ICE accelerator, E=12-20 keV, τ =2.5 μ s, VT25U; (d) GESA accelerator, E=120 keV, w=15 J·cm⁻², n=1 pulse, τ =20 μ s, VT8M; (a) w=2.5 J·cm⁻², n=5 pulses; (b) w=5 J·cm⁻², n=5 pulses; (c) w=2.5 J·cm⁻², n=40 pulses.

The comparison of these results published data, concerning the interaction between high-power pulsed ion beams nanosecond duration and solids [8, 9] allows to conclude, that microsecond concentration fluxes of energy are more promising from the stand point such as craters. Moreover, the IPIB usage for the surface modification of titanium alloys (in contrast to high-power pulsed ion beams) permits to produce thicker remelting surface layers, that should provide in practice the achievement of a record level of service properties.

At the same time the columnar structure formation in near surface area of irradiating parts is considered undesirable. As the columnar structure is formed at high values of the energy density and at a great number of pulses (w>5 J·cm⁻², n> 40 pulses, ICE accelerator; w>15 J·cm⁻², n> 3 pulses, GESA accelerator), than it can be recommended to use more "soft" irradiation conditions (w=2-3 J·cm⁻², ICE accelerator: w=10-12 J·cm⁻², GESA accelerator) for the surface modification of titanium alloy targets under retaining great number of pulses (for reducing the probability of crater formation if the irradiation is carried out in the ICE accelerator).

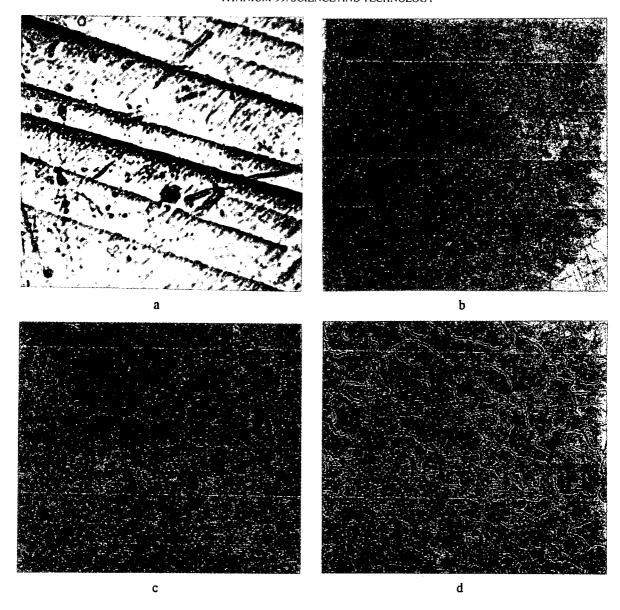


Figure 2. Optical micrographs of VT8M titanium alloys surface: (a) initial state; (b, c, d) the surface after electron beam treatment in the GESA accelerator (E=115 keV, w=15 J·cm⁻², τ =20 μ s); (b) n=1 pulse, (c) n=2 pulses, (d) n=3 pulses.

Figure 3. Element distributions on a depth of VT8M alloy samples treated by IPEB (b: E=120 keV; w=20 J·cm⁻²; τ =20 μ s; n=3; a: initial state).

Table 1. The effect of irradiation and diffusion annealing on the phase composition, lattice parameter (c), and half width ($h_{1/2}$) of α -Ti (101)-arc (VT8M alloy, thickness of the analysing layer is equal to 12 μ m).

N	I Irradiating conditions		Annealing 450 C, 2 h	Phase composition, mass. %		c _α , nm ±0.0005	h _{1/2} ,min ±0.5
	w, J-cm ⁻²	n, pulses		α-phase	β-phase		
1		•	•	89	11	0.4680	22.5
2	1	10	-	86	.14	0.4680	26.0
3	1	10	+	87	13	0.4690	21.0
4	1	100	-	91	9	0.4680	24.0
5	1	100	+	89	11	0.4690	21.0
6	2.5	40	-	94 (traces of α')	6	0.4680	31.0
7	2.5	40	+	87 (traces of α')	13	0.4680	27.5
8	2.5	100	-	95 (traces of α')	5	0.4670	30.0
9	2.5	100	+	90 (traces of α'	10	0.4680	27.5
				and α'' phases)			
10	5	100	<u>-</u> '	44 (α')+43 (α'')	13	0.4685	29.0
11	5	100	. +	92 (traces of α'	8	0.4670	34.0
				and α" phases)	,		

Table 2. The effect of irradiation and diffusion annealing on the phase composition, lattice parameter (c), and half width $(h_{1/2})$ of α -Ti (101)-arc (VT18U alloy, thickness of the analysing layer is equal to 12 μ m).

N	Irradiating conditions		Annealing 450 C, 2 h	Phase composition, mass. %		c _α , nm ±0.0005	h _{1/2} ,min ±0.5
	w, J·cm ⁻²	n, pulses		α-phase	β-phase		el el
1	-	• .	-	100	0	0.4670	27.5
2	1	- 10	-	100	0	0.4670	27.0
3	1	10	+	97	3	0.4650	25.0
4	1	100	-	100	0	0.4680	26.0
5	1	100	+	97	3	0.4650	24.0
6	2.5	40	+	100	0	0.4650	26.0
7	2.5	40	-	98	2	0.4680	32.5
8	5	100	+	100	0	0.4665	34.0
9	5	100	-	100	. 0	0.4685	42.5.5

Table 3. The effect of ICEB irradiation and annealing on residual tensile stresses in the surface layer of titanium alloys (w=2.5 J·cm⁻²; n=40 pulses; T=500 C; τ=8 hours).

N	Alloy	Annealing	Irradiation	Thickness of analysing layer, µm	Residual tensile stresses, MPa
1	VT8M	-	-	1.2	0
2	VT8M	-	+	1.2	180±20
3	VT8M	_	+	4.8	100±20
4	VT8M	-	+	9.6	90±20
5	VT8M	+	+	1.2	85±12
6	VT8M	+	+	4.8	67±11
7	VT8M	+	+	9.6	- 68±11
8	VT18U	-	-	1.1	0
9	VT18U	_	+ .	1.1	500±40
10	VT18U		+	4.5	350±40
11.	VT18U	-	+	9.0	300±40
12	VT18U	.+	+	1.1	300±40
13	VT18U	+	+	4.5	200±40
14	VT18U	+	+	9.0	200±40

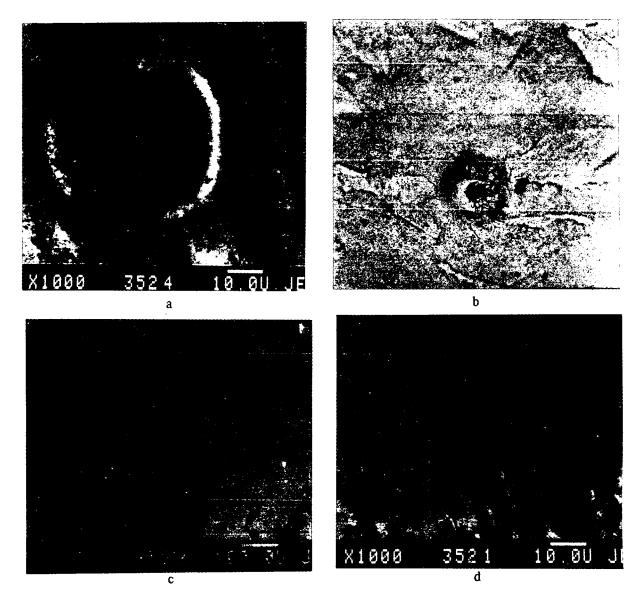


Figure 4. Effect of irradiation conditions on crater formation on the surface of titanium alloys: (a) ICE accelerator, VT6 alloy, E=12-20 keV, w=2.5 J·cm⁻², n=1 pulse, τ =0.7 μ s; (b) GESA accelerator, VT8M, E=115 keV, w=15 J·cm⁻², τ =20 μ s, n=1 pulse; (c) n=1 pulse, (c) ICE accelerator, VT25U alloy, E=12-20 keV, w=2.5 J·cm⁻², n=40 pulses, τ =0.7 μ s; (d) ICE accelerator, VT9 alloy, E=12-20 keV, w=5 J·cm⁻², n=10 pulses. τ =2.5 μ s.

Besides, in [8, 9] the necessity for conducting final heat treatment after IPEB irradiation at operating temperature of the parts is validated. It should be done for a relief of residual tensile stresses and structural stabilization of the material in the surface layer.

4. OPERATING BEHAVIOUR OF TITANIUM ALLOYS TREATED BY ELECTRON BEAMS

As the investigations of IPEB irradiation effect on the surface state of titanium alloys have been began only 5 years ago there is no almost results of these affords in literature. Only scrappy information on the fatigue strength, the oxidation resistance, and the erosion resistance of the titanium alloy samples (VT18U and VT8M) irradiated by IPEBs in the ICE accelerator is presented in [6, 7]. It is showed that ICEBs allows to increase the fatigue "long life" of titanium alloys by an order as a minimum. This value in comparable with the values obtained for the samples and blades irradiated by pulsed ion beams [8, 9]. The results of investigating the fracture surface show [6] that the gain in the number of cycles to fracture after IPEB treatment is conditioned by two reasons: by changing fatigue crack nucleation mechanisms (surface mechanism is characteristic of the initial state and subsurface one proceeds into the irradiated samples) and by sharp decreasing the spacing of

fatigue furrows within a gain (2-3 times). At the same time catastrophic breakdown of the samples with craters took place and moreover the centres of breakdown, as a rule, were in the vicinity of the craters (Fig. 5). So fractography data for samples with IPEB treatment practically coincide completely with the results of investigating fractures surface of the fatigue samples and blades subjected to ion beams with nanosecond duration. The difference consists only of the depth of occurring the centre of fatigue fracture. After ion beam treatment the nucleations of failure are concentrated at the depths of 3-5 µm and after IPEB irradiation - 6-10 µm. The results of tests for the resistance to sand particle erosion (V=200 m/s; quartz; d=80-120 µm) has shown [6] that after irradiation and annealing, the duration of the period to fracture increases more than twice. However, this effect shows up only at low sand loads (not over 20 mg/mm²). In testing for the oxidation resistance, after keeping titanium alloys at operating temperatures for 100 and 200 hours, no difference in specific mass losses between irradiated and unirradiated samples was detected by the weighting method. And only after 500-hours thermal exposure it was observed the improvement of this property as a result of IPEB irradiation and final heat treatment (in 2 times).

At high values of the energy density the process of intense ablation takes place during IPEB irradiation. The latter open wide prospects for the recycling of damaged parts (in particular, the blades a disks of gas turbine engines). It was shown [9] that the rate of ablation from a surface of VT8M titanium alloy compressor blades with ZRN coating (Fig. 6) riches 2 μ m during a pulse (ICE accelerator) and 6 μ m during a pulse (GESA accelerator).

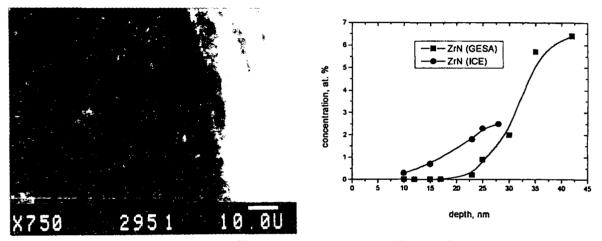


Figure 5. SEM-micrigraph of the VT6M alloy fracture surface after irradiation (ICE accelerator,, E=12-20 keV. w=5 J·cm⁻², n=5 pulse, τ =2.5 μ s) and fatigue tests (T=450 0 C, f=3000 Hz, N=3.98·10⁵ cycles, σ =220 Mpa).

Figure 6. Effect of the energy density on the evaporation rate of ZrN coating from the surface of VT8M alloy compressor blades .

5. CONCLUSION

The major conclusions for this study can be formulated as follows:

- 1. IPEB allows one to ablate surface layers and resistant coatings damaged during operation of the compressor and turbine blades.
- 2. It is advisable to carried out IPEB irradiation at low values of the energy density for surface smoothing, modification of the surface layers and preparation of the surface for coating deposition.

6. REFERENCES

- 1. Y. F. IVANOV, V. I. ITIN, S. V. LYKOV etc.: "Phase and structure alterations into steel 45 during irradiation by low-energy intense electron beam", *News of RAN (in Russian)*, 1993, v. 3, p. 130-136.
- 2. G. E. OZUR and D. I. PROSKUROVSKI: "Formation of sub-microsecond low-energy electron beams into the gun with a plasma anode", *Technical Physics*, 1988, v. 14, N5, p. 413-419.
- 3. V. A. SHULOV, N. A. NOCHOVNAYA, D. I. PROSKUROVSKIY, V. P. ROTSHTEIN: "Surface modification of titanium alloys by intense electron beams", *Proceedings of International Conference* "Beams-96", Prague, 1996, v. 2, p. 808-811.

- 4. D. S. NAZAROV, G. E. OZUR, D. I. PROSKUROVSKIY: "Transportation of a low-energy high-current electron beam of microsecond duration in a plasma-anode gun", *Proceedings of 25-th International Conference on Discharges and Electron Insulation in Vacuum*, Darmstadt, 1992, p. 716-719.
- 5. G. MUELLER, G. SCHUMACHER, D. STRAUSS etc.: "Pulsed electron beam facility GESA for surface treatment of materials", Proceedings of International Conference "Beams-96", Prague, 1996, v. 1, p. 267-271.
- 6. N. A. NOCHOVNAYA, V. A. SHULOV, D. I. PROSKUROVSKIY etc.: "Treatment of titanium alloys by high-power low-energy electron beams", *Proceedings of 5-th International Conference on Electron Beam Technologies*, Varna, 1997, p. 215-218.
- 7. N. A. NOCHOVNAYA, V. A. SHULOV, D. I. PROSKUROVSKIY etc.: "Treatment of titanium alloys by intense electron beams", *Physics and Chemistry of Material Treatment (in Russian)*, 1998, N1, p. 21-28.
- 8. V. A. SHULOV and N. A. NOCHOVNAYA: "Crater formation on the surface of metals and alloys during their irradiation by high power pulsed ion beams", *Nuclear Instruments and Methods in Physics Researches*, 1999, v. B148, p. 154-157.
- 9. V. A. SHULOV, N. A. NOCHOVNAYA, G. E. REMNEV: "Thermomechanical processing of titanium alloys by high power pulsed ion beams", *Materials Science and Engineering*, 1998, v. A243, p. 290-293.
- 10. V. A. SHULOV, N. A. NOCHOVNAYA, V. I. ENGELKO etc.: "Advanced electron-beam technologies for the recycling of aircraft engine components: compressor and turbine blades and disks", *Proceedings of 4-th International Conference on The Recycling of Metals*, Vienna, 1999, p. 11-14.