THE COST OF PERFUSING ORGANS- IS IT WORTH IT? – LIVER PERFUSION

ASHISH SAHARIA, MD, FACS

JC WALTER TRANSPLANT CENTER

SHERRIE AND ALAN CONOVER CENTER FOR LIVER DISEASES AND TRANSPLANTATION

HOUSTON METHODIST HOSPITAL

DISCLOSURES

 Was a PI for OCS transmedics for Houston Methodist

BUSINESS MODEL

- Business models are, at heart, stories that explain how enterprises work. Like a good story, a robust business model contains precisely delineated characters, plausible motivations, and a plot that turns on an insight about value. It answers certain questions: Who is the customer? How do we make money? What underlying economic logic explains how we can deliver value to customers at an appropriate cost?
- Magretta J. Why business models matter. Harv Bus Rev. 2002 May;80(5):86-92, 133. PMID: 12024761

COST EFFECTIVE ANALYSIS

- This is measured by Quality-Adjusted life years (QALY)
- If a person lives in perfect health for one year, that person will have 1 QALY. ...
- If a person lives in perfect health but only for half a year, that person will have 0.5 QALYs. ...
- Conversely, if a person lives for 1 year in a situation with 0.5 utility (half of perfect health), that person will also have 0.5 QALYs. ...

COST BENEFIT ANALYSIS

Adds a dollar value to the analysis

MARKOV MODEL VS MICROSIMULATION STUDY

- A Markov cohort model is "memoryless," while a microsimulation model is not subject to this limitation. "Memoryless" is a defining feature of a Markov model, and indicates that the transition probabilities do not depend on history
- In a Markov model the probability of any event stays constant vs microsimulation study is more realistic accounting for variations, although in small numbers.

MARKOV MODEL EFFECTIVENESS

- It is based on an assumption made by experts of the potential benefits of an intervention.
- For ex. an expert predicts that we would do 5 extra donors per year for 5 years using the machine perfusion.

THEORETICAL ADVANTAGES OF A LIVER PUMP

- Increased transplant volume
- Reduced post transplant cost
- Wait list management
- Benefits the OPO
- Procurement and recipient operating room logistics

INCREASED TRANSPLANT VOLUME

- Increases rate of DCD, ECD liver transplantation
- Allows for active organ assessment of viability ensuring organ usability

REDUCED POST TRANSPLANT COST

- Likely reduction in complication rates and length of hospital stays.
- Increased quality-adjusted life years (QALY)

BENEFITS TO THE OPO

 Increased organ utilization rates will likely help OPOs meet their costs (more organs procured per encounter)

MANAGEMENT OF WAIT LIST

 Increased utilization of DCD and ECD livers may help move the wait list faster, specially when the cancer patients wait for longer periods.

COST OF HOSPITAL BED, COST OF A LIVER TRANSPLANT (HMH DATA)

Private: \$1,565

Telemetry: \$3,042

Intermediate: \$4,787

• ICU: \$8,548

- Average hospital bill for liver transplant: 550,000.
- Average length of stay- 36 days with 23 ICU days

AVERAGE LENGTH OF ICU STAY BEFORE AVAILABILITY OF A LIVER

For MELD >30: 10 days

For MELD 27-30: 17 days

COST OF OCS, TRANSMEDICS MACHINE

- \$69,000 for the disposables and fluids (No charge for the machine)
- \$11,000 for the blood and other medications
- \$ 20,000 for personnel

COST REDUCTION, OCS TRANSMEDICS DATA

- Average cost reduction of 33,662
- Savings for post procedure inpatient bed cost only and does not account for savings from wait-list time and other post-transplant admission care. Cost data was obtained from the CMS Medicare Cost report results as of 05.03.2021 period

Received: 18 April 2021

Revised: 2 August 2021

Accepted: 3 August 2021

DOI: 10.1111/ajt.16797

ORIGINAL ARTICLE

AJT

Cost-utility analysis of normothermic machine perfusion compared to static cold storage in liver transplantation in the Canadian setting

Alexandria N. Webb^{1,2} | Erica L. W. Lester¹ | Andrew Mark James Shapiro¹ | Dean T. Eurich² | David L. Bigam¹

ORGANOX

- Cost per run for the machine is \$15,358-\$16,720
- A decision analytic model using a Markov model was created comparing two different transplant strategies to estimate the costs and outcomes over a 5-year time

TABLE 4. Total OrganOx case cost per run

Item	Total cost (2021 \$US)	Breakdown cost (2021 \$US)	
Operative room average	\$1377.00	-Salaries	-\$1061.45
cost		-Supplies	-\$315.55
Regional hospital supply cost	\$1336.00	-Cefuroxime	-\$3.59
		-Calcium gluconate	-\$12.08
		-Heparin	-\$8.10
		-Humulin insulin	-\$3.10
		-Epoprostenol sodium (Flolan)	-\$16.87
		-pH12 sterile diluent for Flolan	-\$9.41
		-Sodium bicarbonate	-\$29.52
		-Standard cold flush solution (HTK)	-\$206.51
		-Packed RBCs	-\$1045.76
		-Sodium chloride	-\$1.06
OrganOx LTD supply cost		-Sterile single use disposable set	
	\$13 511.48	(cassettes)	\$10 992.28

TABLE 3. Cost inputs

Variable	Distribution	Base case	Standard deviation for sensitivity analysis	Reference
Strategy #1 – control				
Waitlist cost per year	Gamma	151 790.52	150 490.63	DIMR
Year of death on waitlist cost	Gamma	151 790.52	150 490.63	DIMR
Transplant by SCS	Gamma	93 762.01	80 575.93	Micro- costing
Rest of transplant year	Gamma	37 506.47	57 458.43	DIMR
Survive post-transplant cost per year	Gamma	18 753.24	28 730.04	
Death post-transplant	Gamma	119 144.82	3649.20	Micro- costing
Strategy #2 – NMP				
Transplant by NMP	Gamma	118 563.85	84 164.05	Micro- costing
Death post-transplant NMP	Gamma	324 631.18	6155.27	Micro- costing

- The cost of transplantation by NMP was \$118 563 and by SCS was \$93 762.
- The cost of death post-transplantation after NMP was \$324 631 and after SCS was \$119 144
- The cumulative cost for 100 hypothetical patients moving through each strategy over 5 years yields a cost of \$4 559 174 060 for the NMP strategy and \$5 228 333 033 for the control strategy

_

TABLE 5. Cost-utility analysis base case

Strategy	Total	otal Incremental		Incremental cost-effectiveness ratio	
	Cost (2021 \$US)	QALY	Cost (2021 \$US)	QALY	(\$/QALY)
Strategy #1 – control	519 222	3.17	62 767	-0.32	–198 577 (dominated) ^a
Strategy #2 – NMP	456 455	3.48			

 $^{^{\}rm a}$ Dominated ICER results when Strategy #1 – control is both less effective and more costly than Strategy #2 – NMP.

JOURNAL OF MEDICAL ECONOMICS 2020, VOL. 23, NO. 11, 1284-1292 https://doi.org/10.1080/13696998.2020.1804391

Cost-utility analysis of normothermic liver perfusion with the OrganOx metra compared to static cold storage in the United Kingdom

 $\label{eq:mehding} \mbox{Mehdi Javanbakht}^{a\,,b}\,,\,\mbox{Atefeh Mashayekhi}^{a\,,b}\,,\,\mbox{Miranda Trevor}^{c}\,,\,\mbox{Michael Branagan-Harris}^{b}\,,\,\mbox{and Jowan Atkinson}^{b}$

UK STUDY

- The total costs per patient were £37,370 vs £46,711, and the total effectiveness per patient was 9.09 QALYs vs 10.27 QALYs for SCS and OrganOx metra groups, respectively
- The estimated ICER (Incremental cost effectiveness ratio) was £7,876 per each QALY gained
- Results from the PSA (probability sensitivity analysis)showed that use of OrganOx metra has 99% probability of being cost-effective at a £20,000 willingness-to-pay threshold

