

T E C H

E D I T I O N
T U R N O V E R F O R

B U S I N E S S
A P P S

P A S S T H E K N O W L E D G E

#PTK F O R M E R LY O R A C L E S C E N E
A N I N D E P E N D E N T

P U B L I CAT I O N N OT
A F F I L I AT E D W I T H

T H E O R AC L E
C O R P O R AT I O N

S U M M E R 2 02 0 | I S S U E 7 3

W W W . U K O U G . O R G

The f
ut

ur
e o

f d
ec

isi
on

-m
ak

in
g

with
 O

ra
cle

 B
lo

ck
ch

ain

How
 a

vir
tu

al
co

un
cil

 us
ed

 H
yp

er
led

ge
r –

 an
d a

ra
nge

of
 ot

her
 te

ch
nol

og
ies

 – to
 en

han
ce

 dem
ocr

ac
y

F L A S H B A C K
R E V I S I T E D
Connor McDonald shows
how to use it for faster
application development

E X E C U T I O N
P L A N S
Jonathan Lewis
on speeding up
database queries

N I N E O F T H E
W O R S T !

The most common
DBA mistakes – and
how to avoid them

IT
 W

O
R

K
S

U
N

M
A

IN
TA

IN
A

B
LE

U
N

R
EA

D
A

B
LE

PAT
C

H

QUICK
SOLUTION

LAZYIT
 C

O
M

P
ILES

Tech Edition#PTK

Online#PTK

I N T H I S I S S U E

1 0
Enhancing democracy
with Oracle Blockchain
The route to transparent and
secure decision-making in a virtual
municipality in the Netherlands

1 6
A fresh look at Flashback
How it can become a useful tool for
streamlining application development

2 0
The worst DBA practices
and their technical debt
Nine bad habits to avoid if you don’t
want to store up trouble for later

2 4
Learning from
execution plans
Solving the curious mystery
of an extra-long run time

2 8
Connectivity agent
installation on Linux
How to download and install the
Oracle agent on a host machine

P L U S

0 5
Me & the UKOUG
ESB’s Simon Holt on boosting
your career by volunteering

0 7
News Etc
How the UKOUG is adapting,
enter our Partner of the Year
Awards, and more

0 9
UKOUG Events
Find out more about our
virtual gatherings for 2020

In the Business Apps half of this
issue, you’ll find an in-depth
look at how Oracle HCM can
play a key role in employee
experience (page 14), two

expert views on cloud security
(page 30), plus lots more

knowledge-sharing from the
world of business.

View the latest issue online
and access the archive of

#PTK and Oracle Scene
editions here:

ukoug.org/ptk

C O V E R S T O R Y

2 0

 #PTK 03

C H E C K
O U T

B U S I N E S S
 A P P S !

1 0

#PTK: Pass The Knowledge © UK Oracle
User Group Ltd
The views stated in #PTK are the views of
the author and not those of the UK
Oracle User Group Ltd. We do not make
any warranty for the accuracy of any
published information and the UK Oracle
User Group will assume no responsibility
or liability regarding the use of such
information. All articles are published on
the understanding that copyright
remains with the individual authors. The
UK Oracle User Group reserves the right,
however, to reproduce an article, in
whole or in part, in any other user group
publication. The reproduction of this
publication by any third party, in whole
or in part, is strictly prohibited without
the express written consent of the UK
Oracle User Group.
Oracle is a registered trademark of
Oracle Corporation and/or its affiliates,
used under licence. This publication is
an independent publication, not
affiliated or otherwise associated with
Oracle Corporation. The opinions,
statements, positions and views stated
herein are those of the author(s) or
publisher and are not intended to be the
opinions, statements, positions, or views
of Oracle Corporation.

#PTK: PASS THE KNOWLEDGE
EDITORIAL TEAM

Editor
James Lawrence
james.lawrence@topdogcomms.co.uk

Art Director
Peter Allen
peter@peterallendesign.co.uk

Consulting Editor
(Technology)
Martin Widlake

UKOUG contact
Deanna Bates
deanna.bates@ukoug.org

Head of Programme
Management
Anna Crellin
anna@ukoug.org

UKOUG governance
A full listing of Board members,
along with details of how the user
group is governed, can be found
at: www.ukoug.org/about-us/
governance

UKOUG office
19-23 High St,
Kingston upon Thames,
London KT1 1LL
Tel: +44 (0)20 8545 9670
info@ukoug.org
www.ukoug.org

Produced by
Top Dog Communications
Tel: +44 (0)7913 045917
james.lawrence@topdogcomms.co.uk
www.topdogcomms.co.uk

Designed by Peter Allen Design
peter@peterallendesign.co.uk
www.peterallendesign.co.uk

Stay safe

James Lawrence
Editor

#PTK

About the editor
James Lawrence is a
professional multi-media
journalist and editor
who has been covering
business and technology
for more than a decade.

04 #PTK www.ukoug.org

A lot has changed since we published
the previous issue of #PTK at the end
of last year, when we had no inkling
of how the Covid-19 pandemic would
transform almost everything in
business and society alike – and is
set to overshadow our lives for some
time to come. One thing that became
apparent at a very early stage of the
crisis is the essential role played by
digital technology in helping to keep

our organisations running, not to mention the way it will support our
societies in the future. A glimpse at how that future might look is the
virtual municipality of Vaardam, in the Netherlands, which is using
Oracle Blockchain and a range of other technologies to enhance
democratic decision-making. It doesn’t take much of a leap of
the imagination to see how this project can be extrapolated to all
manner of scenarios in a wide range of organisations and communities
around the world.

It’s also clear that, because well-functioning IT is now more critical
than ever for many organisations, it has never been a more important
time to ensure you’re getting the most out of your Oracle investments.
One great way to do that is to avoid falling into common traps that are
likely to create trouble for you and your colleagues in the future – or a
“technical debt”, as it is termed in our article on page 20. Here, our writer
lists nine of the most common bad habits he’s observed among DBAs
and other IT professionals, and how best to avoid them.

Elsewhere in this issue, we’re fortunate to be able to share in the
expertise of Oracle gurus Connor McDonald who (in the start of a new
series) takes a fresh look at Flashback, and Jonathan Lewis who solves
a mystery relating to execution plans.

Please also take a moment to look at our Business Apps issue.
There’s plenty there to grab your attention, such as our cover story
which examines the key role Oracle HCM can play in helping to get
the very best out of every organisation’s most valuable resource – its
employees (page 14).

As ever, this magazine relies on your valuable feedback, ideas and
contributions to ensure it’s the best it can be – so please do send your
thoughts to editor@ukoug.org.

Welcome to the new issue of
 Pass The Knowledge

 #PTK 05

To learn more about volunteering
for the UKOUG, go to:
ukoug.org/volunteersarea

M E U K O U G& the

The UKOUG is a vast repository of
knowledge from people who are actually
doing the job. Rather than getting the
shiny, happy story that you get from
Oracle about how it’s so easy to implement
feature X – where they say, “You just press
a button and it works,” and you know very
well that’s not the case – you can talk to
people who’ve actually gone through the
pain of implementing a feature and said,
“Yes, this is good,” or, “No, it isn’t quite all
it’s cracked up to be.” When I first joined
about 25 years ago, I immediately realised
the value in this.

Membership is about being able to
validate your own views. You might have
an idea about how to go about doing
something, but for whatever reason you
might not have people around you that you
can talk it through with. So being able to
go to a conference and see others talking
about that very thing is useful.

There’s a lot of value in connecting with
people in a peer environment. You’re
meeting people who you may come into
contact with further down the line in your
career – which has been very helpful to
me over the years.

Simon Holt from
ESB on how he’s
benefitted from UKOUG
membership and why
volunteering can give
your career a boost

I’ve found myself volunteering as the lead
for the Irish conference over the last few
years. We’ve built that up from quite small
beginnings to the point where we’ve got
global recognition, and we’ve got people
coming from all over the world to come
and talk for us. It takes up most of my
volunteering time and it’s hugely enjoyable.
It was a great shame when we had to
cancel this year because of the Covid-19
pandemic, but it was the right thing to do
in every respect.

By volunteering, you can add your voice
to what’s happening. So if you come along
to an event and think, “I’d have liked to
have seen some material on topic X,” or,
“Why is the format at an event the way it
is,” or anything else like that, you’re able to
influence it – and, indeed, I have done. I’ve
instituted quite a few changes to the way
the Irish conference works, for example.
That’s very satisfying.

If you’re unsure about whether to
volunteer or not… basically, just do it.
There’s nothing that’s holding you back.

“We want to know
what people have
got to say and how
they think we can
improve things”

We’re an inclusive bunch of people, and
we want volunteers. We want people to
come along and challenge what we’re
doing. We want to know what people have
got to say, how they think we can improve
things. It doesn’t matter what level, either.
If you’re thinking that you’ve got to spend a
load of time doing it, you absolutely don’t.
You can do as little or as much as you wish.
And it doesn’t always mean being involved
with committees and events – it can be
something like contributing a short
piece for the magazine!

Doing all of this can also have a career
benefit for yourself in terms of your CV
and your professional development – you
shouldn’t ever overlook that fact.

 Simon Holt is Oracle Systems Architect at
the Irish utility ESB, and also a member of
the UKOUG’s Tech Senior Advisory Team.

TECH | VOLUNTEERING

© 2020 All Rights Reserved l Splash Business Intelligence UK Ltd.+44 (0) 1273 234640 emea@splashbi.com

Out-of-the-box reports, dashboards, and analytics for the
entire organisation and all Oracle Applications

SplashHR People Analytics (500+ KPIs)
help organisations attract, develop &

retain top talent

Oracle EBS Reporting & Analytics
1,400+ reports across all EBS

applications and modules

Financial Reporting in Excel for
Oracle Cloud and Oracle EBS

CRM Reporting & Analytics
Salesforce, Marketo, Google Analytics,

Microsoft Dynamics, etc.

Oracle Discoverer migration utility.
Why rip and replace when you can

migrate?

500+ Pre-built Reports for Oracle Cloud
HCM, ERP, & SCM, and

Ad-hoc Reporting

Pre-defined content
supporting Covid-19 analysis

Hierarchical employee
risk analysis

Remote work analysis

Health risk profile Daily refresh
of employee data

Covid-19 exposure

Free Pandemic Management Solution*
Keep your employees safe and maintain business continuity

*Cloud software subscription at no cost during the pandemic. Discounted implementation (at cost)

#PTK 07

If you’d like to learn how
Oracle HCM is helping
organisations to deliver
great employee
experiences, take a look at
the Business Apps half of
this issue (page 14). You’ll
also find a range of other
business-related topics
that will help you get the
most from your tech.

Nominations for one of our biggest
events of the year are now open,
so if you’re an Oracle partner, make
sure you get your entry in before
our deadline of 26 June.

We will be hosting the awards
evening virtually, but that doesn’t
take anything away from its
importance. Unique to these
awards, the winners are decided
exclusively by Oracle customers
– which ensures they give a true
reflection of the view of our
community and recognise the
genuine value that partners bring
to end-users – and we’ll still be
celebrating in true UKOUG style
with the winners this autumn.

Find out more about the awards,
see the list of categories, apply to
become an adjudicator, check out
last year’s winners, and submit your
nominations here: ukoug.org/pya

ENTER NOW
FOR THE UKOUG
PARTNER OF THE
YEAR AWARDS

CHECK OUT
BUSINESS APPS…

Like most other organisations, the
UKOUG had to adapt the way it
operates as soon as the UK’s lockdown
measures were announced.

The biggest change is that we have
cancelled or postponed all of our
physical events for the remainder of
2020. However, because supporting
our members and helping them to
get the best value from their Oracle
investments continues to be
paramount, we have been working
hard to create a series of virtual events
(see page 9 for more details) as well
as uploading a wide range of virtual
content onto our website.

Since making this shift, we have run

Supporting our members
through the pandemic

a Higher Education Forum virtually,
our first multi-streamed event (Tech
Summit, see below) and an evening of
online networking with our President,
Martin Widlake. Meanwhile, in our
virtual content library, we are now
hosting 700+ resources, including a
wide range of videos, webinars and
white papers, from both UKOUG
members and Oracle itself.

Rest assured, we will continue
to operate as an essential hub of
information for all things Oracle – and
we very much look forward to meeting
you again in person as soon as we can.
 SEE OUR VIRTUAL CONTENT LIBRARY:

ukoug.org/virtualcontent

The UKOUG’s Tech Summit
in April will go down in
history as our first ever
multi-streamed event
– which meant that, as with
our physical conferences,
we hosted several
presentations happening
at the same time, so
attendees could choose
to view the ones most
useful for them.

We received a lot of
positive feedback, such as:
 “Very good event – very

well organised. I would be
happy to attend other
virtual conferences.”
 “The virtual format was

a brilliant way to bring
the Oracle community
together for a day of
learning which otherwise
wouldn’t have happened.”
 “A great way to hear from

experts including those
who designed the
software, and hear real
experience stories, warts
and all. You also get a
chance to chat afterwards.”

The opening keynote
was by Oracle’s Andy
Clark, who talked through
Oracle’s involvement in the
World Bee Project, while
two of the most popular
streams were: Tim Hall on

The 7 Deadly Sins of SQL;
and Andrew Mason (NHS)
and Pelin Ozbozkurt
(Oracle) on Analytics and
Data Science in the NHS.

Members who weren’t
able to attend on the day
can view all the sessions
here: ukoug.org/
techsummitunoagenda

Virtual Tech Summit was “brilliant”

N E W S E T C . . .

6 ways to get the
most from your

UKOUG membership
We’ve had to make a few changes in recent months, but the
UKOUG is doing more than ever to help you make the most

of your Oracle investments. Here are some good ways to ensure
you’re getting the best value from your membership fee:

Access our
unrivalled virtual

content, whether live or
from our extensive library,

from the largest independent
Oracle user group in Europe

Save money
with exclusive offers

on training for members

Add your
colleagues to your

membership so they
too can network,
share and learn

Volunteer and
help us deliver

useful content and influence
other Oracle professionals

Find an Oracle
partner when you’re in

need of support, either from
our Partner Directory, in person

or online at our events

Sign up for our
conferences – we’re

currently planning to run two
of the largest European user
group conferences in 2021,

one for the Technology
community and one for
Business Applications

TO FIND OUT MORE: Visit our website which is full of information, ideas and knowledge-sharing
from Oracle users like you: www.ukoug.org Email us at: membership@ukoug.org

U K O U G E V E N T S
This year’s schedule is looking very different to usual, due
to the Covid-19 pandemic – but there will still be lots of
great online events to help you get the most out of Oracle

TECH | 2020 EVENTS

 #PTK 09

F I N D

O U T M O R E
For an up-to-date list of all the
UKOUG’s virtual events, and to

book your place, visit our
website: ukoug.org/

comingsoon

The agenda will be a mix of Technology
and Business Applications topics
across both days and all content will
be relevant to Oracle users right across
the UK and beyond.

Highlights will include:
 Implementing Oracle Recruitment

Cloud, with Patrick Haston from
Scottish Natural Heritage
 Oracle Database 19c for Developers,

with Chris Saxon from Oracle
 How we Developed Holly the Chatbot

at Hermes Parcelnet, with David
Callaghan from Hermes
 Building a Highly Available and

Scalable Logistics Platform with Oracle
19c and Goldengate 19c, with Nikitas
Xenakis from The Co-op

There will also be an opportunity to join
in our virtual networking drinks at the
end of each day.

For more details of the agenda
and to register, please go to:
ukoug.org/ougscotland2020

OUG Scotland
11 and 18 June

Because of the UK national lockdown,
we have cancelled or postponed
all our physical events for 2020.
However, we’re working harder than
ever to ensure we can bring you the
same broad range of Oracle expertise
from the best and most experienced
people in both our Business Apps and

Tech communities, as well as the
opportunity to network and share
knowledge with your peers.

We’re rapidly reorganising
everything, so are unable to publish
a full schedule at the moment, but
see below for one of the upcoming
highlights. We will also be adding a

stream of webinars to the calendar,
from both customers and partners,
plus virtual roundtables for specific
communities where participants
will be able network and discuss
particular topics.

Keep checking our website for the
latest info: ukoug.org/comingsoon

TO FIND OUT MORE: Visit our website which is full of information, ideas and knowledge-sharing
from Oracle users like you: www.ukoug.org Email us at: membership@ukoug.org

Enhan
cin

g

de
m

ocr
ac

y

with
 Ora

cle

Blo
ck

ch
ain

10 #PTK www.ukoug.org

Va
ar

dam
 is

 th
e fi

rst

vir
tu

al
m

un
ici

pali
ty

in
 th

e N
et

her
lan

ds.

Her
e’s

 how
 it’

s

ex
plo

iti
ng a

 ra
nge

 of

Ora
cle

 te
ch

nol
og

ies

to
 en

co
ur

ag
e

cit
ize

n par
tic

ip
ati

on

in
 go

ve
rn

m
en

t

dec
isi

on
-m

ak
in

g

th
at

is
tra

nsp
ar

en
t,

re
sis

tan
t t

o f
ra

ud

an
d ea

sy
 to

 us
e –

an
d ca

n be a
pplie

d

to
 m

an
y o

th
er

bu
sin

es
s u

se
 ca

se
s

1 0 - S E C O N D

S U M M A R Y

 To in
cre

ase citiz
en

parti
cipatio

n, a
 gro

up of

scientis
ts, b

usinesses and

non-p
ro

fit
s cre

ated a virt
ual

municipality
 th

at w
ould be

able to
 m

ove fa
st a

nd

innovate w
ith

out a
ny of

th
e tra

ditio
nal h

urd
les.

 A fo
rm

al s
tru

ctu
re fo

r

decision-m
aking w

as

require
d – and th

ey

deployed blockchain

technology on th
e O

racle

platfo
rm

 to
 fa

cilit
ate th

is.

 Vario
us key design

decisions w
ere m

ade along

th
e w

ay in
 ord

er t
o ensure

th
e decision-m

aking could

be fro
m a tr

usted digita
l

identit
y, a

nonymous and

tamper-p
ro

of.

TECH | BLOCKCHAIN

 #PTK 11

TECH | BLOCKCHAIN

12 #PTK www.ukoug.org

T
raditionally, it has been hard for municipalities
to reach out to their citizens. Participation is
low and often the “usual suspects” show up for
town hall meetings. Young people are hard to
motivate, elderly people have mobility issues,
people from different backgrounds might have
language issues, and so on.

Another challenge for municipalities is that
they are unable to innovate because of vendor
lock-in, reluctance to be an early adopter, rules

and regulations that are lagging and a lack of in-depth IT
knowledge to manage complex new IT projects.

To tackle these issues, an initiative consisting of
representatives from the science community, public sector
and for-profit community worked together to create a
virtual municipality that would be able to move fast and
innovate without any of the traditional hurdles. Such an
initiative needs several things in order to be successful:

 �Citizens who can register as “a member or citizen of
Vaardam” and try new things – a virtual municipality
without citizens is meaningless
 �A formal structure to make decisions
 �Real software solutions that can be used by physical
municipalities in the real world.

A formal structure to facilitate decision-making, including
voting, needs to adhere to at least the following
requirements:

 �It should make use of a trusted digital identity
 �Votes should be anonymous
 �There should only be one vote per citizen
 �It should be tamper-proof.

To facilitate the decision-making process and to offer a
platform for “real organisations”, the initiative developed
a solution that enables participation that is transparent,
resistant to fraud and easy to use.

D E V E L O P I N G T H E D E C I S I O N - M A K I N G P R O C E S S
The decision-making process that is supported involves
five steps, as shown in Figure 1.

The first step is to decide what topics are important. For
example, suppose a municipality wants to involve citizens
in the decision to cut the budget. The first step is to ask for
input. All eligible voters can enter one or more suggestions
for items they feel should not be cut. You then group them,

to take out duplicates and merge similar suggestions until
you end up with a list of about 15 to 20 topics. Then all
eligible voters give three votes to the topics they feel are
most important. This results in an order list, or agenda,
of items that can be solved.

In step 2 a group (of citizens or professionals) will
come up with a solution on how to cut the budget, by
first investigating rules and regulations, conditions
and stakeholders. Then a solution is defined in step 3.
Experts can be called in and everyone can listen in on the
conversation. This whole process can be followed from a
mobile app. When a solution is ready, all eligible voters
vote in favour or against the solution in step 4. When they
vote against the solution, they must explain why. When
66% vote “Yes” the solution is accepted and will be
executed in step 5. This is monitored to make sure the
solution is realised according to the decision made.

This process can be applied to many different decision
types and organisations: so not only what is important in
the government of a country, but also to make decisions
and involve employees, or decide on the agenda and topics
in shareholder meetings, yearly union negotiations and
many more.

T H E T E C H N I C A L S E T- U P
The solution consists of the following logical components
(see Figure 2).
1	� Integration with itsme® to verify the identity of

the voter: this is based on OpenID Connect and
is compliant with eIDAS level “high”, a European
security standard

2	� Mobile apps based on Oracle JET to give access to the
functionality on both iPhone and Android

3 	� WordPress to publish content about the decision and
the solutions

4 	� Rocket.Chat to allow citizens and groups to video chat
and comment on the process

5 	 Oracle Blockchain Service to support voting
6 	� Oracle Kubernetes Engine to support the business logic

of voting, suggestions and results
7 	� Oracle Autonomous DWH to offload the blockchain

transactions
8	 Oracle Analytics Cloud to analyse trends in the results
For Vaardam, the solution was integrated with Oracle
Service Cloud as the source to check the eligibility of a
citizen. Other organisations can do this based on a local
membership database or on features that are shared with
itsme®. No personal information about citizens is stored
in the solution.

B L O C K C H A I N D E S I G N
To capture the votes, we used Oracle Blockchain. This is
a service that is based on Hyperledger and has several
advantages, as follows:

W H A T I S B L O C K C H A I N ?
A blockchain keeps track
of transactions, in a
so-called ledger. Data is
immutable, and each
transaction has a link to
the previous transaction.

Before a transaction is
put on the ledger, it is
validated by peers, so
there is no “man in the
middle” and no single
point of failure.

 #PTK 13

1 	� It is a permissioned blockchain. This means it takes
less processing power to validate new transactions and
you can control access to the network.

2 	� It is available as open source and supported by multiple
cloud vendors. This means participants can join the
network with the provider of their choice: public cloud
providers, or on-premise or private cloud solutions.

3 	� It supports multiple mainstream languages. This
means that you can program your contract (chaincode)
in the language of your choice. In our case that was
Node.js.

4 	� Oracle has added features to make it simple to set up
and communicate with a specific peer using REST APIs.

We designed the chaincode in such a way that there is
strict separation between voting passes and ballots. Each
eligible voter receives a voting pass. Each voter can cast a
ballot, which is on a separate ledger.

V O T I N G PA S S D E S I G N
Because voting needs to be anonymous, the voting pass
chaincode is separate from the ballot chaincode. The

voting transactions are shown in the design of the voting
pass chaincode (see Figure 3).

Voting passes are dispensed (put on the blockchain) by
the voting pass dispenser. Citizens can claim a voting pass
(if they are eligible) and they can vote once. This ledger
does not keep track of what the citizen voted for, only of
the voting pass.

 Figure 1: The decision-making process YES

Decide on solution

Vote Yes or No
plus why not

E V E R Y O N E

1
VOTE

Create agenda

Prioritise
groups

Group
suggestions

Enter
suggestions

1
E V E R Y O N E E V E R Y O N EG R O U P 1

3
VOTES

Analyse the topic

Investigate topic

 Requirements
 Conditions
 Solutions direction

2
G R O U P 2

Create a solution

Detail
solution

Define
solution

22
G R O U P 2G R O U P 2

Govern execution of
the solution

Monitor
execution

3
G R O U P 3

 Figure 2: Technical components of the solution

Oracle Service Cloud Oracle Digital Assistant

O
rganisation

specific

WordPress Rocket.Chat

Oracle Blockchain Service Oracle Autonomous DWHITSME Backend

Oracle Kubernetes Engine

Oracle Analytics Cloud

FAQ

Citizens

Citizens Vaardam
skillAPI

Vardaam
voting pass Voting pass

Voting pass

Result report

Vardaam
ballot Ballot

Ballot

Visualisation
Voting

Ballot
dispenser

Dashboard

Events Jisty MeetRocket.Chat
server

ITSME (on mobile)

Claim (JWE)

Deeplink/
applink Callback deeplink/applink

Check citizen

API

REST
Proxy

Channels Chaincode

Voting app
(JET on mobile)

Ballot dispenser
(JET on mobile)

Dashboard
(JET on mobile)

Figure 3: Voting pass chaincode design

Vardaam pass
dispenser

Citizen Y Citizen X

CitizenDashboard

Claim

Claim

Claim

Vote

Vote
Vote

Dispense

Election NET

14 #PTK www.ukoug.org

A B O U T T H E A U T H O R
Lonneke Dikmans is a Partner and Global
CTO at eProseed. Her specialities include
architecture, integration and software
development in the government, utilities
and financial services sectors.

This means that in terms of transactions, the following
states have been identified (see Figure 4).
1	� Issued: A voting pass is issued. This is the empty

starting state of a voting pass on the ledger.
2	� Claimed: A citizen claimed the voting pass. This voting

pass can now only be used by this citizen. The citizen is
identified on the blockchain by a deterministic GUID
that cannot be traced back to his or her identity.

3	� Voted: The voting pass is used. This state can only be
reached if the voting pass was claimed.

In the latest version we also added a state for “expired”,
because voting passes are not valid indefinitely. We may
also add a “delete” to be able to disqualify a voting pass.
Each update, including delete, is validated and stored
on the blockchain.

B A L L O T D E S I G N
The design for the ballot looks similar, as you can see
in Figure 5.

A vote can be for a topic (for example, education as
a topic that can be voted for), a solution (yes or no), or a
candidate in case of “traditional” elections of candidates
for a governing body. The state transitions are similar as
for the voting pass: issued, claimed, cast, expired, deleted
(or invalidated).

C O N C L U S I O N A N D N E X T S T E P S
Integrating blockchain with microservices using APIs and
Oracle Platform as a Service has created a very powerful
framework. The blockchain technology facilitates the
voting part of the decision process and ensures that votes
can’t be tampered with.

We have run several pilots in the Netherlands, both
with municipalities and with a company. The next step
will be to improve the user experience, test performance to
ensure we can scale up, add functionality for sortition and
to think about solutions to prevent family voting.

Figure 4: State transitions of the voting pass on the blockchain

A vote can be for a
topic (e.g. education),
a solution (yes or no),
or a candidate in the case
of “traditional” elections

Ballot
dispenser

Option
(No, a topic,
a candidate)

Option
(Yes, a topic,
a candidate)

Citizen
(StemApp)

Issue

Issue

Issue

Dashboard

Claim

Vote +1 Vote +1

Cast

Dispense

Election NET

Election End

Figure 5: Design of the ballot chaincode

Claimed VotedIssued

Claimed VotedIssued
Claim Vote

Claim Vote

Claim Vote
Claimed VotedIssued

 #PTK 15

TECH | BLOCKCHAIN

DECISION 1: Minimise
code in the chaincode
Description: Chaincode is
software that runs on the
peer nodes and enables
interaction on the network’s
shared ledger. We decided
to minimise the business
logic that is put in the
chaincode.
Rationale: Chaincode is,
like any other part of the
blockchain, immutable. This
means it can’t be deleted. If
there is an update, you must
consider what to do with
the transaction data already
on the ledger. Do you want
to start a new ledger? Keep
the old values with the old
version of the code, and
new transactions that are
interacted with using the
new version? This will be
hard to recognise when
analysing the results. To
avoid this problem, we
decided to keep the
chaincode as stable as
possible: it only has a
minimum of business logic,
checking the state transition
and required fields.
Impact: Because of this
decision, business logic is
created in a microservice for
voting and ballots. These
are easier to change than
the chaincode and can be
updated based on specific
contexts. This backend
must be secure and on
the internal network of
the platform to avoid
man-in-the-middle attacks.

DECISION 2: Define
two independent
chaincodes
Description: Each citizen
receives a voting pass to
make sure they can only
cast their vote once (or
select an option once).
The ballot (the option or
candidate the vote goes to)

is defined in a separate
ledger and there are no
links between the two.
Rationale: Voting should be
anonymous, that is a ground
rule in democracy. However,
we do need to make sure
there is no fraud by people
voting more often than
allowed. This calls for two
different ledgers without
any link between the
transactions.
Impact: Since the system
does not keep track of what
people vote for, we can’t
show the individual vote
after it has been cast in the
app. To check if someone
already voted, we need a
mechanism that can identify
a voting pass. We use a
deterministic mechanism
to generate a GUID. We
also need a mechanism
that can’t be reversed, so
the voting pass can’t be
parsed to determine the
unique user.

DECISION 3: Support
multiple authentication
and authorisation
mechanisms
Description: In Vaardam
we use itsme® as an
authentication mechanism.
We will support IDIN in the
future and already support
username/password for
regular “inquiries” and
two-factor authentication
in cases where we want
a higher security level.
Rationale: itsme® is
a powerful mechanism,
that gives full control
to citizens over the data
they exchange. However,
there are two downsides:
 There are competing

standards both from a
public sector perspective
and from a profit sector
perspective. We want to be
able to support different
organisation types and they

have a free choice when it
comes to authorisation and
authentication means they
want to acquire.
 Some inquiries are less

sensitive and should have
a low threshold to enter so
username/password is fit for
those occasions (inquiries
for events, for example).
Impact: Serving
participants with a list of
decisions they are eligible
to vote for depends on how
they are logged in. This
means we need to provide
a way to search for elections
and present an alternative
login if the election requires
this. It complicates both the
user interface and the
business logic.

DECISION 4:
Hyperledger as
blockchain technology
Description: As a
blockchain platform we
picked Hyperledger, a
permissioned blockchain
technology.
Rationale: Hyperledger
supports permissioned
blockchain. This is cheaper
and more energy-efficient
than public blockchains.
Validation of transactions

can be done by the
organising entities, the
voting entities, or the
publishing entities can
have different privileges.
Hyperledger is supported
by multiple cloud vendors
and can run both in the
cloud and on premise. It
is also open source and
supports multiple coding
languages.
Impact: We need to
define our chaincode
and permissions.

DECISION 5: OCI
Kubernetes Engine as
container platform
Description: As a platform
for running our backend
logic we decided to use
Kubernetes Engine.
Rationale: There were
several reasons why: it is
supported on different
clouds so there is no vendor
lock-in, it is a widely used
container engine, it is
scalable, it is lightweight,
you can test the code locally
and then deploy easily using
automated build jobs and
CI tooling.
Impact: We containerised
our code and wrote YAML
for deployment.

M A K I N G T H E K E Y D E S I G N D E C I S I O N S
During this process, we had to make several important design decisions – some of these could
be valid for other projects, while others might be revisited by us or are specific to the situation

18 #PTK www.ukoug.org16 #PTK www.ukoug.org

1 0 - S E C O N D
S U M M A R Y

 Developers using
iterative processes,
DevOps, and automated
testing and deployment
can all benefit from
having a deeper
understanding of
Flashback technologies
and how to get the most
out of them.

 There are six Flashback
technologies inside
the Oracle database.
Here, we examine
how Flashback Query
can enhance the
development process.

 Future articles will look
at Flashback Table, Drop,
Database, Transaction
and Data Archive
technologies.

By Connor McDonald

Flashback isn’t just for
emergencies. In the first
of a series, we take a look
at how it can become a
useful tool for streamlining
modern application
development processes

A fresh look
at Flashback
Part 1

 #PTK 17

TECH | FLASHBACK

M
any readers of this article, I would be willing to
wager, are aware of the Flashback technologies
in the Oracle database but have never had
a reason to use them. This is by no means a
criticism of the Oracle customer base, but more
a reflection on how the technologies related to

Flashback are often interpreted, and also the purpose for
which they were originally built.

When “Flashback” is mentioned, the vision that comes
to mind is often the red panel of glass on the side of the
wall emblazoned with “In case of emergency, break glass”
or perhaps oxygen masks dropping from the ceiling of the
aircraft. Flashback is seen as solely a technology related to
rectifying accidents or catastrophic emergencies that have
occurred in the database.

Perhaps this was true when Flashback was first built
back in Oracle 9 nearly two decades ago. In those days,
the development of applications was a fairly static and
methodical process. You designed your application; then
once that phase was complete you coded the application,
tested it in isolation from everything else, and finally (after
countless meetings and the appropriate management
sign-offs!) your application would be deployed to
production. Each phase was a one-time affair, and then
your application would be doomed in a potentially endless
support and maintenance phase.

But times have changed and the entire mechanism
via which applications are developed has also changed.
Nowadays, the norm is a much more iterative process,
and those iterations are also moving towards automation.
We now have automated unit tests, automated integration
tests and even automated deployment under the banner
of DevOps. The traditional phases of development now
repeat many times with increasing rapidity, and many
of these phases are now routinely performed in an
unattended fashion.

For this reason, it’s time for the modern application
developer to revisit Flashback. Under these new
development regimes, Flashback actually becomes
a very useful tool in streamlining modern
development processes.

The term “Flashback” is actually a banner for six
disparate technologies inside the Oracle database.
These are:

 �Flashback Query
 �Flashback Table
 �Flashback Drop
 �Flashback Database
 �Flashback Transaction
 �Flashback Data Archive

In this series of articles, I will cover each in turn, with
a description of the functionality and then a view of how
it can improve your current application development
processes. So let’s begin with the first of the technologies,
the Flashback Query function.

W H AT I S F L A S H B A C K Q U E R Y ?
In what came as a revelation for some Oracle practitioners,
every single person that has ever written a query against
the Oracle database has implicitly been using the
Flashback Query function. By way of revision, one of
the fantastic things about databases that observe the
principles of ACID is that you can abandon (or “undo”)
an uncommitted transaction before it causes any damage
to your database.

The mechanism via which the Oracle database can
achieve this is beyond the scope of this article but, in a
nutshell, it takes a record of your changes along with some
instructions internally as to how to reverse those changes
should you issue a rollback command. It stores these
instructions in undo segments.

Decades ago, back in Oracle version 4, an epiphany
occurred, in that this same undo information could be
used to allow applications that were querying the database
to get what is now known as a “consistent read”. Using
the undo information from transactions conducted in
the database, a running query will, on the fly, reverse out
database changes to give results that are consistent to the
point in time at which the query commenced. You may
have heard the term “readers do not block writers, and
writers do not block readers”.

Thus, every query in the Oracle database presents a view
of data at a nominated point in time, namely the moment
the query commenced running, no matter how long that
query takes to execute. This is the essence of Flashback
Query. Flashback Query extends this concept so that the
nominated point in time can be any time of your choosing,
not only the time the query commenced.

Figure 1 shows the syntax for a Flashback query. The
geeks among us can nominate a SCN, that is, a “system
change number” but most people will usually use the
TIMESTAMP clause to get data as of a point in time.

SQL> select * from DEPT AS OF SCN 995401;

 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

SQL> select * from DEPT
 2 AS OF TIMESTAMP systimestamp -
 3 interval '20:00' minute to second;

 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Figure 1: The syntax for a Flashback query

A table to which a Flashback Query clause is being
applied is no different to any other table in a query. For
example, Figure 2 (on the next page) shows that you

18 #PTK www.ukoug.org

can join tables as of the current moment in time with
those involved in a Flashback expression.

F I N D I N G A U S E C A S E
At this point, curious readers may be pondering: “But what
is the usefulness of knowing what the DEPT table looked
like 15 minutes ago? Where is the use case?”

Consider a common unit testing requirement.
The current state of data in one or more tables is often
captured, then a test is run to achieve a desired final
state. In order to validate the unit test, we often need
to compare the original state of the data with the final
state of the data.

Without Flashback Query, this requires more code –
either taking a copy of the original data, or spooling it
out to a file, or some other bespoke mechanism so that it’s
possible to perform a difference calculation after the unit
test has run. With Flashback Query, this becomes trivial.

Figure 3 shows an example of the DEPT table in its final
state being joined to itself as of five minutes ago, in this
case most likely to be before the unit test was run. Using
a FULL OUTER JOIN we can easily identify deletions,
insertions and updates, to track what the unit test did.
Flashback Query becomes a much simpler mechanism
of doing before and after analysis.

D ATA A N A LY S I S
Flashback Query also offers more in the way of data
analysis for your unit test results. Revisiting Figure 3
for DEPTNO=10, the original state of DNAME was
“ACCOUNTING” and the final state was “UNKNOWN”.
Does this mean that the unit test updated the
Department name from accounting to unknown?
Perhaps… perhaps not. There could have been many
intermediate updates to this row during the test – it
may have been one update; it may have been 10.

Flashback Query also offers a capability known as
ROW VERSIONS, where the transactional history of
changes to the row can be interrogated. Figure 4 shows
the VERSIONS BETWEEN syntax for Flashback Query.
Note that this is only a single row in the DEPT table,
but with five versions.

The five rows in the result set are the five iterations
of the value of DNAME for the DEPTNO=10. Flashback
row versions reveals that five distinct updates were
performed to department 10 to get from the original
state of “ACCOUNTING” through to the final state
of “UNKNOWN”.

Additionally, various pseudo-functions are available
for use within a Flashback row versions query, to
further interrogate the information pertaining to each
transaction that occurred on this particular row. Figure 5
shows the VERSIONS_STARTTIME, the VERSIONS_XIS,
and the VERSIONS_OPERATION pseudo-functions to

SQL> select e.empno, e.ename, d.dname
 2 from emp e,
 3 dept AS OF TIMESTAMP sysdate-1/24 d
 3 where d.deptno = e.deptno;

 EMPNO ENAME DNAME
---------- ---------- --------------
 7782 CLARK "PREVIOUS NAME"
 7839 KING "PREVIOUS NAME"
 7934 MILLER "PREVIOUS NAME"
 7566 JONES RESEARCH
 7902 FORD RESEARCH
 7876 ADAMS RESEARCH
 7369 SMITH RESEARCH
 7788 SCOTT RESEARCH

Figure 2: Joining tables as of the current moment in time

SQL> select case
 2 when d1.deptno is null then 'DELETE'
 3 when d2.deptno is null then 'INSERT'
 4 end action,
 5 d1.deptno, d2.deptno, d2.dname, d1.dname
 6 from DEPT d1 FULL OUTER JOIN
 7 DEPT AS OF TIMESTAMP sysdate-3/864 d2
 8 on d1.deptno = d2.deptno;

ACTION DEPTNO DEPTNO DNAME DNAME
------ ---------- ---------- -------------- ----------
 10 10 ACCOUNTING UNKNOWN
 20 20 RESEARCH RESEARCH
 30 30 SALES SALES
DELETE 40
INSERT 50 MARKETING MARKETING

�Figure 3: An example of a table in its final state being joined to itself as of
five minutes ago

SQL> SELECT deptno, dname
 2 FROM dept
 3 VERSIONS BETWEEN
 4 TIMESTAMP SYSTIMESTAMP –
 5 INTERVAL '20:00' MINUTE TO SECOND
 6 AND SYSTIMESTAMP
 7 WHERE deptno = 10;

 DEPTNO DNAME
---------- --------------
 10 ACCOUNTING
 10 MONEY GRABBERS
 10 FINANCE
 10 BEAN COUNTERS
 10 UNKNOWN

Figure 4: The versions between syntax for Flashback Query

reveal the moment in time that the version of this
particular row came into existence, and the operation
(I=INSERT, U=UPDATE, D=DELETE) that caused this
change. (I will return to the transaction ID (XID) in
a future article.)

Figure 6 shows a variant of the row versions syntax in
order to mine as much transactional history information

 #PTK 19

TECH | FLASHBACK

as possible, by ranging between a system change number
of MINVALUE and MAXVALUE.

F U R T H E R C A PA B I L I T I E S
Another nice capability of Flashback Query is that, if
you already have a suite of SQL scripts that you use to
interrogate tables impacted by unit or integration testing,
you do not have to go into those scripts and manually
edit every single SELECT statement to add an AS OF clause
in order to activate a query. The nominated moment in
time for which you wish to run your Flashback Queries
can also be specified at the session level. The
DBMS_FLASHBACK package shown below allows enabling
Flashback Query for an entire session, at which point all
queries will run as of that nominated point in time.

Thus you could run a suite of existing queries as of the
current moment in time, then set the nominated point in
time to before the unit test was run, and then rerun the
same suite of scripts to get before and after results.

SQL> exec dbms_flashback.enable_at_

time(systimestamp-1/24);

One note of caution. Remember that any database
query, Flashback or otherwise, is in effect undoing any
transactional changes that have occurred to the data
after the nominated moment in time.

If you’re performing a Flashback Query back over
many minutes of time, and many changes have occurred
to the data within that time span, then you are potentially
undoing hundreds, thousands or even millions of
transactions, in order to return the data consistent with
a point in time in the past. A Flashback Query against a
table that is aggressively being changed could be a very
expensive query to run.

It is for this reason that the ability to run a Flashback
Query is a privilege that must be granted via the Database
Administrator. If you cannot run a Flashback Query, speak
to your DBA to be granted the FLASHBACK privilege.

This covers just one of the six flashback technologies
that have existed in the Oracle database since version 9.
Hopefully you can now see the opportunities for using
Flashback Query to complement your current unit testing
strategies. In the next article I will look at more of the
Flashback technologies and how they can streamline
your application development processes.

A B O U T T H E A U T H O R
Connor McDonald is a
Database Advocate for
Oracle. He loves talking
tech and blogs at:
connor-mcdonald.com
and youtube.com/
ConnorMcDonaldOracle

SQL> SELECT deptno, dname,
 2 VERSIONS_STARTTIME
 3 ,VERSIONS_XID
 4 ,VERSIONS_OPERATION
 5 FROM dept
 6 VERSIONS BETWEEN TIMESTAMP
 7 SYSTIMESTAMP - INTERVAL '20:00' MINUTE TO SECOND
 8 AND SYSTIMESTAMP
 9 WHERE deptno = 10;

 DEPTNO DNAME VERSIONS_STARTTIME VERSIONS_XID V
--------- -------------- ---------------------- ---------------- -
 10 UNKNOWN 16-SEP-19 11.53.45 PM 0200100060040000 U
 10 MONEY GRABBERS 16-SEP-19 11.53.36 PM 0600050065040000 U
 10 FINANCE 16-SEP-19 11.53.24 PM 09000D001D050000 U
 10 BEAN COUNTERS 16-SEP-19 11.53.12 PM 01001A00EA030000 U
 10 ACCOUNTING

Figure 5: The moment in time that the version of each particular row came into existence

SQL> SELECT deptno, dname,
 2 VERSIONS_STARTTIME
 3 ,VERSIONS_XID
 4 ,VERSIONS_OPERATION
 5 FROM dept VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE;

 DEPTNO DNAME VERSIONS_STARTTIME VERSIONS_XID V
---------- ----------- ------------------------ ---------------- -
 50 UNKNOWN 16-SEP-19 11.08.15 PM 04000700EA030000 U
 30 UNKNOWN 16-SEP-19 11.08.15 PM 04000700EA030000 U
 20 NERDS 16-SEP-19 11.07.57 PM 090016001D050000 U
 20 R&D 16-SEP-19 11.07.48 PM 05000B0074040000 U
 ...

Figure 6: A variant of the row versions syntax

20 #PTK www.ukoug.org

1 0 - S E C O N D S U M M A R Y

 “Technical debt” is
when an IT solution –
often in software – is
provided, but ends up
causing more problems
or complexity further
down the line.

 One good way of
avoiding these is to look
at some of the worst IT
practices to understand
why they are likely to
leave a technical debt.

 Such practices include:
going for a quick fix
rather than a better
quality long-term
solution; taking pride in
large databases; poor
naming conventions;
and using too many
one-off patches.

 Part 2 of this article, in
the next issue of #PTK,
will focus on the more
technical errors that
are frequently made.

By Franck Pachot

If you want to avoid storing up trouble for you and your colleagues
in the future, here are nine common mistakes to steer clear of

I
’m always cautious when being asked for “best
practices” because it depends on the context. I can
encourage some “default practices” for when you
have no good reason to do differently – but people
often ask for simple, generic rules that they can apply
everywhere. However, for general recommendations,

I prefer to list the things that should always be avoided,
so I’ll cover off a few “worst practices”.

As a consultant, I have seen environments with a
substantial “technical debt”. That is, decisions made in the
past, due to a lack of knowledge or just by laziness, may
be annoying in the present but also compromise future
operations, making everything complex and difficult to
maintain and evolve. This is not a comprehensive list but,
for all of them, I’ve experienced the consequences.

As it’s so long, I’ve split the list into two – this one will
focus more on “architectural” worst practices and the next
one (to be published in the next issue of #PTK) will be more
about the technical side of things.

TECHNICAL

DEBT
The worst DBA

practices and their

 #PTK 21

TECH | DATABASE TIPS

 1 J U D G I N G S U C C E S S A S
“I T W O R K S” R AT H E R T H A N W O R K Q U A L I T Y
This one is the most important and therefore top of
the list. You should always think about the future for
yourself and your colleagues and try to build something
that is sustainable.

As an example, a user asks for a schema copy with
Data Pump and you do it quickly, happy to close the ticket.
But did you consider that the same request will probably
happen again soon? Take the time to document what
you did (the expdp/impdp commands in this example)
so that next time it will be an easier job. Documenting
for colleagues is also like asking for a code review. The
colleague may tell you that you forgot a “flashback_time”
and that what you did in haste ends up inconsistent. And
after a few occurrences where this documented procedure
is followed, it will be just a small additional step to script
it. And one day, your user may even have a portal to run it
by themselves. This chain of documenting, scripting and
automating will improve your quality and efficiency.
Sustainable productivity is not about doing things quickly
but about reducing the technical debt.

In the same way, when you script some actions, the
quality of your code will be crucial in making it usable
by others: naming and documenting, verifying return
codes to trap errors, making procedures re-runnable, and
cleaning the state at the end. For example, I have seen
a login.sql that formatted a few columns with “noprint”.
You or a colleague will waste a lot of time one day when
running a script with a column that has the same name
and which will just disappear. How long will you waste
before tracing this to the login.sql? Each time you use
COLUMN in sqlplus, you should COLUMN CLEAR at the
end. In IT as everywhere else, it is smart to leave the place
in the same state you found it.

2 B E I N G P R O U D O F L A R G E D ATA B A S E S
I like autoextending datafiles (and bigfile tablespaces
for databases in terabytes) but letting datafiles grow
automatically doesn’t mean that they remain managed.
You should set the maxsize to what you expect, with a
little margin, and set an alert when it reaches a threshold.
And then, rather than increasing the maxsize lazily, take
the time to check if this growth is normal or not. This
decision is made by the application owners for the user
tablespaces, or the DBA for other tablespaces.

I have seen a SYSAUX tablespace that reaches 1TB. This
is not normal and is possibly due to bugs in an AWR purge
that have not been fixed. And even when the bug is fixed,
once SYSAUX is very large, the purge procedures will fail,
and it will continue to grow. The technical debt will be paid
when you need to upgrade the database. The upgrade
procedure may have to change some AWR tables, or when
you have to restore any tablespace because SYSTEM and
SYSAUX must be fully restored as well. And to repair that,

you have to run some unsupported actions like the
one I mentioned in this blog post: Truncate AWR tables
(unsupported): (see tinyurl.com/PTK-TruncateAWRtables).

Also, not purging or archiving the audit trail will be a
problem later. Everything that grows must have some
housekeeping. The same goes for the traces in DIAG.
Oracle manages some of them with ADRCI but not all.
The day you will need to look at the trace, to troubleshoot
a critical issue, you don’t want to encounter an “ls” in
a directory with millions of files, or with a “vi” on a
background process trace in gigabytes.

I have seen a 500MB controlfile. The controlfile is not
optimised to be this size. You pay the debt when you
duplicate the database, each “switch datafile” taking
minutes if your storage is not optimal.

3 A D D I N G Y E T-A N O T H E R-M A S T E R-
R E P O S I T O R Y T O D E S C R I B E T H E I N F R A S T R U C T U R E
You can be tempted to describe all your infrastructure
(servers, databases, versions…) in an infrastructure
database and then generate everything (provisioning
scripts, backup schedules…) from there. But everywhere
I’ve seen this done, it was adding a single-point
dependency, adding complexity to any operation
procedure, limiting the automation possibilities and agility.

First, you don’t need it because there are already a lot

W H A T I S T H E “ T E C H N I C A L D E B T ” ?
The best illustration I’ve
seen for this is “Technical
Debt Is like a Tetris Game”
by Jonathan Boccara.
When you play Tetris, you
can be very efficient at the
beginning of the game.
Just press the space bar
quickly without thinking
too much. But soon, your
game will be completely
fragmented, and it will be
difficult to get back to a
manageable situation.
You can take the time to
design the bricks in the
best way to avoid any
holes, or keep holes that
you manage, like when
you leave space for the
vertical bar.

The same in IT. You can
do things very quickly in
software, with apparently
good productivity. But
this productivity is not
sustainable and may have

bad consequences in the
future. You, or your future
colleagues, will regret your
quick “solution”. When I
was at university, the first
programming project
we had was a good
eye-opener for this. We
delivered a program that
worked, and even did
more than was required.
But we all had a big
surprise when we got the
result: a very bad mark.
Because “it compiles” or
“it works” is not the most
important goal. The
program we wrote
the night before the
deadline was completely
unreadable and
unmaintainable.

The lesson learned:
providing a solution is
not enough. It must be
understandable and
maintainable in the future.

IT
 W

O
R

K
S

U
N

M
A

IN
TA

IN
A

B
LE

U
N

R
EA

D
A

B
LE

PAT
C

H
QUICK
SOLUTION

LAZYIT
 C

O
M

P
ILES

22 #PTK www.ukoug.org

of those repositories, with a dedicated purpose. From a list
of servers you can get the databases from oratab or Grid
Infrastructure, and take all the info from there. From the
RMAN catalog you get all the info for files and backups.
From Data Guard Broker you get the primary/standbys
configuration (yes, not using the broker is another of
the worst practices...).

Enterprise Manager Cloud Control gathers information
from the targets, and you can add the small amount
of missing information (department, line of business,
lifecycle, contact, cost centre) with a GUI or command line.

Keep things simple. Rather than building from a
“master-meta-database”, it is more efficient to implement
and use standards and then get information from
configuration repositories. And avoid a single point of
dependency between backups, monitoring, auditing,
provisioning… you can then evolve one without being
dependent on the other.

For more about this, I recommend Ludovico Caldara’s
publications and presentations about convention over
configuration and why you should not “manage a zoo”.

4 B E I N G L A Z Y W I T H N A M I N G C O N V E N T I O N S
We are all weak with documentation because it’s not easy
to keep up to date. That’s why we should always favour
auto-documented actions, and the easiest way to do this
is having a consistent naming convention. When you add
a ‘P’, ‘T’ or ‘D’ to the database name for Production, Test,
or Development, then you don’t need to maintain a table
of database names and environments. Your eyes and
your fingers immediately know when you connect to
production. Of course, a red prompt is even better and
that is easy to set when you can rely on a letter.

You should define naming conventions in your team for
database names, database unique names, file paths and
service names. Services can have a domain name, like
hostnames. This is perfect for distinguishing production
from test. Then when you copy production to test you just
need to change the default domain name and you are sure
that all database links go to the right environment. When
you duplicate to a temporary auxiliary instance, for
point-in-time-recovery, you define a temporary db_domain
and you are sure it will not register with a listener with an
existing service.

I said that service domain names are like hostnames,
but I recommend that you don’t use the same ones.
Because when you enable EZCONNECT and the service
name is not defined, it will attempt to find a host with this
name. And if there is a host name resolution for it you will
connect to the wrong one or simply wait for TCP timeout.
That’s another reason for good naming conventions:
isolate the namespaces. For example, have a different
pattern for a database unique name, a PDB and an
application service. They are all registered as services to
the listener, but you must be sure to use only the right one.

5 B E I N G O V E R Z E A L O U S
W I T H N A M I N G C O N V E N T I O N S
I said that naming
conventions are good as a
replacement to document
properties that will not
change. But they are bad if
you put more information
in than that. For example,
I have seen databases
where the version is part
of the name, like DB12 for
12c. One day you will
upgrade this database
and you don’t want to have
to rename it. Also, it adds
no value at all as it is easy
to query the version from
a database. This is the
same when mentioning
“_STANDBY” for the
standby database. One
day, you will switch over
and the roles will change.

Instead, maybe add the
physical location like “GE”
for Geneva if you are sure

that if you move to another
data centre you will add a
new standby rather than
physically moving the
servers. But do not put the
name of the rack where
the servers are, or the
name of the storage where
the database is, because
you may want to change
that (online in RAC by
adding nodes and/or ASM
disks) without renaming
everything. When a user
connects to a service, they
should know the database
they connect to and the
role (application workload,
read/write, read-only…)
but not where it runs
physically. That’s the
goal of HA services, TAF,
Application continuity,
connection manager,
SCAN listener and so on.

 #PTK 23

TECH | DATABASE TIPS

A B O U T T H E A U T H O R
Franck Pachot is Principal Consultant
and Database Evangelist at dbi services,
Switzerland. He is an Oracle Certified
Master, Oracle ACE Director and a
member of the Oak Table.

6 C O N F I G U R I N G T H E C A R T B E F O R E T H E H O R S E
I have seen many inefficient configurations because the
structure has been defined in the wrong order or in the
wrong way, such as buying the hardware first and then
thinking about how to configure the RAC cluster, and
then not having enough network cards to ensure reliable
interconnect. Or configuring huge pages as a percentage
of the available RAM rather than from the SGA sizes
required. Or using the in-memory option for a data
warehouse without thinking first about partitioning
and parallel query.

In this case inter-instance parallel query was even
disabled with parallel_force_local=true and the tables
were populated with distribute: any query had only half
the rows in the in-memory column store and the others
had to come via a full table scan from the row store.

7 N O T K E E P I N G C O N T R O L , O R B E I N G T O O S M A R T
Those features that have consequences on the overall
system complexity or the overall operation effort should
remain under control. Database links are a great feature
when you have to share data or database calls between
two databases. But this needs to be designed and
controlled properly (loosely coupling, no cyclical
dependency, documented, correctly updated when
the test is refreshed from production…).

Keeping things under control means the DBA creates and
manages them. I have seen databases where the developers
could create a database link as soon as they had to share
some data and I had to troubleshoot bugs with distributed
transactions over three databases of different versions.
Allowing such things is not being smart, but lazy. The debt
is paid later by having to migrate or upgrade some databases.

It gets even worse when materialised views is the quick
solution for any performance issue. I have seen a “BI”
database generating a terabyte of redo log per day just
because of those frequent refreshes. Again, replication
and aggregates are valid features when designed and
controlled. But this has consequences on the infrastructure.
It must be designed by Dev and Ops together.

And finally, granting powerful privileges is OK for
sandboxes and development – not production. Dropping
a table by mistake in production should never happen
because what runs in production should have been run in
dev, test and preprod before, with the same automated
scripts, and with a validation check between each.

9 D I S A B L I N G T H E O P T I M I Z E R S TAT I S T I C S
The optimizer’s goal is to
find the execution plan for
the fastest response time.
But there’s something
more important for the
users: the stability of the
execution plan and the
predictability of this
response time. The right
approach for plan stability
is SQL Plan Management
(SQL Plan Baselines).

But this is about worst
practices… Of course,
forcing the use of the rule
optimizer is a very bad
one. Tweaking “optimizer_
index_cost_adj” parameter
is also a bad one. And
stopping the statistics
gathering is the worst one
because of the technical
debt. You may be happy
with the results in the first
months, but you pay the
price after a while.

I was contacted by
a user with a critical
performance issue where
they were not gathering
new statistics. How can I
“tune” a query when the
statistics provided to the
optimizer are completely
wrong? I can’t. When I
asked for the reason, I got:
“As far as I remember the
statistics were disabled a

couple of years ago for
performance reasons.”

That’s a completely
wrong approach. In this
example, the partitions that
were filled at the time they
stopped the gathering job
have their stats from 10
years ago. The partitions
that were pre-created
at that time still have
numrows=0 but now
contain millions of rows.
And the new partitions
created after this decision
had no statistics, so that
dynamic sampling gets the
current cardinality. Stale
statistics are bad, but a
mix of stale, zero and no
statistics is even worse.

To add to that technical
debt, a lot of /*+ INDEX() */
hints had been added to
the queries, probably to
work around the lack of
fresh statistics at some
point, thus creating
another technical debt
(all the hints) to maintain.

I’ve also seen many
databases with incorrect
system statistics. The
worst you can do is gather
these without verifying
them and today the
recommendation is to
use the defaults.

8 G O I N G H E A D L O N G W I T H O N E- O F F PAT C H E S
Oracle is complex software and we encounter issues
(bugs). There are usually two “solutions”: fixes (like
a patch) and workarounds (like disabling a feature).

 Of course, the fix is the long-term solution when
implemented in a Release Update. But in the short term,
applying a one-off patch is probably the worst idea. You
will start to pay the debt when you will have to ask for a
merge, and then you will increase the debt further. I have
seen databases with more than 100 one-off patches. That
prevents keeping up to date with Release Updates, or you
have to roll back the one-off patches, apply the RU, and ask
for a merge for the previous fixes that you still need.

Always prioritise workarounds. It is better to ask for the
fix to be included in the next RU. I’ve written more about
this before in Oracle Scene (the previous title for #PTK):
“Why you must run on the latest release update” (see
tinyurl.com/PTK-LatestReleaseUpdate).

24 #PTK www.ukoug.org

O
ne of the most common requests made to the
UKOUG is for more “real life” examples. It’s often
challenging to do this, because no one wants to
broadcast their failures and very few want to
reveal the secrets of their success. Fortunately,
you can find some interesting cases on the Oracle

Developer Community forum – though you don’t always
get to see the outcome of your suggested solutions. Here
is such a case, where a simple query presented a surprise
and the subsequent conversation produced a nice example
of how to use run-time execution plans to solve problems.

W H AT ’ S I N A N E X E C U T I O N P L A N ?
The question we are usually trying to answer when we
review an execution plan is “How can I make this query
more efficient?” and the execution plan can tell you three
things that help. First, the order in which you visit the
tables in your query; second, the method used to visit each
table; and finally, the statistics about those visits – how
many times something happened, how many rows (or
rowids) were acquired and how many were subsequently
used or discarded.

From these “mechanical” features of execution plans
you can then derive three pieces of “design” information.
First, you can get a good idea of how the optimizer has

1 0 - S E C O N D S U M M A R Y

 In the Oracle
Developer Community
forum, the author came
across a query where
an SQL statement was
taking many hours
to run without any
immediately obvious
reason why.

 After investigation,
it became clear that
the optimizer had
introduced a massive

extra load through
complex view merging.

 The probable solution
was to tell the optimizer
to unnest, but without
complex view merging.

 Although the original
poster never responded
to say if this worked,
it’s likely to be the right
starting point in the
search for an answer.

By Jonathan Lewis

transformed your query in the early stages of optimisation;
second, you can see where most of the work and most of
the time went as the query executed; and finally, you get
some ideas about how you can manipulate the query, or
correct the object statistics, or change the indexing
strategy, to do less work and get a better response time.

Here, we will examine a query, the problem posed by its
owner, and the execution plans that told us all we needed
to know to come up with a possible solution.

T H E P R O B L E M
In the initial statement of the problem we were told that
the following SQL statement (running in 10.2.0.5, even
though it was reported in March 2020) was taking 50

Learning from
execution plans
The curious case of an SQL
statement that had a very long
run time – and how a possible
solution was found

 #PTK 25

TECH | EXECUTION PLANS

seconds to return a count of 157,000 rows:

You’ll notice the predicate num_telefono < ‘606000000'.
This may suggest a classic modelling issue of storing
something that appears to be a number as if it were a
character string, but we seem to be looking at telephone
numbers here so this apparent design flaw may be
necessary to avoid losing leading zeros.

The problem is this: when the owner changed that
predicate “a little” to read: num_telefono < ‘607000000'
the count doubled to 314,000 rows but the run time
jumped to 3 hours, 42 minutes and 35 seconds – while
the execution plan stayed the same.

I N I T I A L O B S E R VAT I O N S F R O M T H E S Q L
The fact that the count() doubles doesn’t mean we
only had to do twice the amount of work: it’s possible
that the volume of data where num_telefono is between
‘606000000’ and ‘607000000’ is much larger than the
volume of data where num_telefono is less than

select count(*)
from (
 select num_telefono, ind_baja
 from pga_abonos
 where num_telefono < '606000000'
) abo
where
 abo.ind_baja = 'N'
and num_telefono in (
 select num_telefono
 from pfa_contabon
 where cta_facturac in (
 select
 cta_facturac
 from pfa_contabon
 group by
 cta_facturac
 having
 count(*) = 1
)
)
;

‘606000000’ even though the final result is only a little
larger because the (possibly expensive) subquery
eliminates most of the extra data.

We see an “IN” subquery, with its own “IN” subquery,
and the inner subquery is an aggregate with no filter
predicates. I wonder how much data there is in the
pfa_contabon table and how many distinct values
of cta_facturac there are and if there are any special
values of cta_facturac that cover a huge number of
num_telefono in the increased range and therefore
remove them from the final count.

Another thing we might think of at this point is that
the optimizer will probably do something to convert an
“IN” subquery to an “EXISTS” subquery, in fact it might
manage to transform both subqueries, and it might change
existence subqueries into semi-joins. Another possibility
is that the optimizer could unnest the inner subquery to
produce a join with an aggregate view, and then it might
use complex view merging to transform from the
“aggregate then join” construct into a “join then aggregate”
construct and, again, it could finish off by turning the
resulting “EXISTS” subquery into a semi-join.

It’s useful to be aware of options like this before looking
at the plan as that may help us to recognise what the
plan is telling us.

F I R S T S I G H T O F T H E P L A N
At first we were shown the execution plan that resulted
from running the query from SQL*Plus with autotrace
enabled, but that doesn’t show us where the work
happened or where the time was spent – and it’s always
possible for autotrace to lie about the real plan. So in the
follow-up conversation we got hold of plans from memory
(dbms_xplan.display_cursor()) after enabling rowsource
execution statistics, and this is the plan for the faster
query (with the Omem and 1mem columns removed):

PLAN_TABLE_OUTPUT
--
SQL_ID dggzstf4a786t, child number 0

select count(*) FROM (select num_telefono, ind_baja FROM PGA_ABONOS where num_telefono < '606000000') ABO where ABO.IND_BAJA = 'N' and
NUM_TELEFONO IN ((select num_telefono from pfa_contabon where cta_facturac in (SELECT CTA_FACTURAC FROM PFA_CONTABON
GROUP BY CTA_FACTURAC HAVING COUNT(*) = 1)))

Plan hash value: 1329905074

| Id | Operation | Name | Starts | E-Rows | Cost (%CPU)| A-Rows | A-Time | Buffers | Reads | Used-Mem |

1	SORT AGGREGATE		1	1		1	00:00:11.56	52006	39358	
* 2	HASH JOIN SEMI		1	24857	22M (4)	20364	00:00:11.55	52006	39358	1935K (0)
* 3	TABLE ACCESS FULL	PGA_ABONOS_1	1	24857	9097 (3)	22237	00:00:05.76	40290	39358	
4	VIEW	VW_NSO_2	1	28M	22M (4)	28038	00:00:05.61	11716	0	
* 5	FILTER		1			28038	00:00:05.59	11716	0	
6	HASH GROUP BY		1	28M	22M (4)	30123	00:00:05.56	11716	0	
* 7	HASH JOIN		1	2867M	57758 (92)	133K	00:00:04.07	11716	0	6087K (0)
* 8	INDEX FAST FULL SCAN	PK_CONTABON	1	526K	1299 (4)	30123	00:00:00.84	5858	0	
9	INDEX FAST FULL SCAN	PK_CONTABON	1	1196K	1289 (3)	1196K	00:00:00.01	5858	0	

Predicate Information (identified by operation id):

 2 - access("NUM_TELEFONO"="$nso_col_1")
 3 - filter(("NUM_TELEFONO"<'606000000' AND "IND_BAJA"='N'))
 5 - filter(COUNT(*)=1)
 7 - access("CTA_FACTURAC"="CTA_FACTURAC")
 8 - filter("NUM_TELEFONO"<'606000000')

 Figure 1

26 #PTK www.ukoug.org

| Id | Operation | Name | Starts | E-Rows | Cost (%CPU)| A-Rows | A-Time | Buffers | Reads | Used-Mem |

1	SORT AGGREGATE		1	1		1	00:42:40.00	52005	40197	
* 2	HASH JOIN SEMI		1	29516	22M (4)	20964	00:42:39.99	52005	40197	2185K (0)
* 3	TABLE ACCESS FULL	PGA_ABONOS_1	1	29516	9097 (3)	28917	00:00:04.31	40289	40197	
4	VIEW	VW_NSO_2	1	28M	22M (4)	28876	00:42:35.49	11716	0	
* 5	FILTER		1			28876	00:42:35.46	11716	0	
6	HASH GROUP BY		1	28M	22M (4)	37088	00:42:35.40	11716	0	
* 7	HASH JOIN		1	2868M	57766 (92)	458M	00:07:39.74	11716	0	6859K (0)
* 8	INDEX FAST FULL SCAN	PK_CONTABON	1	526K	1299 (4)	37088	00:00:00.82	5858	0	
9	INDEX FAST FULL SCAN	PK_CONTABON	1	1196K	1289 (3)	1196K	00:00:01.20	5858	0	

The data sizes in this run are smaller than the case
described in the original posting – the 11.56 seconds
(A-time) and 20,364 (A-rows) at operation 2 correspond
to the 50 seconds for 157,000 rows in the initial posting.

Looking at the body of the plan we can see the name
VW_NSO_2 at operation 4 – the form of the name tells us
we have a non-mergeable view generated by Oracle as it
unnested a subquery; and we can see that it’s the second
child of operation 2 which is a “hash join semi” that has
a full tablescan of PGA_ABONOS_1 as its first child. So
pga_abonos_1 is the build table, vw_nso_2 is the probe
table – and the “semi” tells us that it probably represents
the first IN subquery that has been transformed into an
existence subquery and then into a semi-join.

There are many internally generated viewnames that
Oracle uses, almost all of them start with the vw_ prefix
and end with a number, and a common theme to them is
that they represent non-mergeable views, which means
they represent the opening line of a self-contained query
block with a subplan which is essentially independent
of the main plan.

So let’s see what’s going on inside this view.
Running through the basic “first child first, recursive
descent” mechanism we find that the view contains
a hash join between two “tables” that, judging by their
names, are actually the primary key index on the
pfa_contabon table.

So it looks as if the second subquery in the original
query has also been transformed away (in this case being
replaced by a join rather than semi-join). But we also
notice that after the hash join (operation 6) Oracle then
does a hash group by (operation 5) followed by a filter
(operation 4). How does this structure compare with the
actual appearance of the second subquery?

The code has the structure:

cta_facturac in (
 select cta_facturac ...
 group by cta_facturac ...
)

So we can infer that Oracle has unnested this subquery to
produce an aggregate view to join to the other occurrence
of pfa_contabon – but has then used “complex view
merging” to transform the plan from “aggregate then join”
into “join then aggregate”.

Checking the Predicate Information we can see that
the optimizer has been able to copy the predicate
num_telefono < ‘606000000’ to operation 8 using
transitive closure. We can also see that the filter at
operation 5 is the count(*) = 1 that appeared in
the original second subquery.

Amazingly the predicted number of rows (E-rows) from
the hash join in this view is 2.867 billion rows, and the
optimizer then expects to aggregate this down to “only”
28 million rows (at a cost of 22M – the most significant cost
in the entire plan). Luckily at run-time the join produced
(A-rows) only 133 thousand rows which could be processed
in a few seconds.

Now we compare this with the plan we get with the
“tiny” change to the num_telefono predicate (see below):

 Figure 2

 #PTK 27

TECH | EXECUTION PLANS

| Id | Operation | Name | Starts | E-Rows | Cost (%CPU)| A-Rows | A-Time | Buffers | Reads | Used-Mem |

1	SORT AGGREGATE		1	1		1	00:42:40.00	52005	40197	
* 2	HASH JOIN SEMI		1	29516	22M (4)	20964	00:42:39.99	52005	40197	2185K (0)
* 3	TABLE ACCESS FULL	PGA_ABONOS_1	1	29516	9097 (3)	28917	00:00:04.31	40289	40197	
4	VIEW	VW_NSO_2	1	28M	22M (4)	28876	00:42:35.49	11716	0	
* 5	FILTER		1			28876	00:42:35.46	11716	0	
6	HASH GROUP BY		1	28M	22M (4)	37088	00:42:35.40	11716	0	
* 7	HASH JOIN		1	2868M	57766 (92)	458M	00:07:39.74	11716	0	6859K (0)
* 8	INDEX FAST FULL SCAN	PK_CONTABON	1	526K	1299 (4)	37088	00:00:00.82	5858	0	
9	INDEX FAST FULL SCAN	PK_CONTABON	1	1196K	1289 (3)	1196K	00:00:01.20	5858	0	

The shape of the plan and the placement of the
predicates (which I haven’t repeated) doesn’t change, the
only critical changes are in the A-Rows and A-Time. The
number of rows acquired from pfa_contabon at operation
8 goes up from 30,000 to 37,000 thanks to the change in
predicate for num_telefono – at the same time the number
of rows produced by the hash join goes up from 133,000
to 458 million.

To generate an extra 458 million rows in the hash join,
every one of the extra rows in the build table must, on
average, correspond to 65,400 rows in the probe table
(458M / 7,000 = 65,400). We might like to run some queries
against just those 7,000 rows to see how many distinct
values they hold for cta_facturac and what the pattern
of rows per cta_facturac is in that subset and in the
whole table.

Whatever the fine detail might be, though, the key
point is that it takes the optimizer 7 minutes 39 seconds
(A-Time) to generate the 458M rows, and a further
35 minutes (42:35 – 7:35) to aggregate then back down
to the 37,000 rows we started with. The (most significant)
performance problem seems to be in the complex
view merge.

T H E S O L U T I O N
At this point we might consider whether there’s a way to
express the requirement differently to avoid such a bad
plan. On the other hand there’s a very obvious defect in
the optimizer’s strategy that we might be able to address
very easily, and sometimes it’s a lot safer to tweak the
plan than it is to change the code, since an error in
the rewrite could result in a piece of code that isn’t
logically equivalent.

In this case we’ve seen that the optimizer has
introduced a massive extra load through complex view
merging. We’ve identified that point because we can see
the numbers and the time, and we recognise the patterns
that say “subquery unnest (vw_nso)” and “complex view
merge (join then aggregate)” and in those patterns we can
see that it’s the late aggregation that has added almost all
the time. Conversely the A-rows drops back to a relatively
small number before we go into the following hash
semi-join, which makes it look as if the preliminary
unnesting strategy was a reasonable choice.

So let’s just tell the optimizer we want the unnest, but
we don’t want the complex view merging. Since we’re
running on 10.2.0.5 this could be quite easy – just edit
the innermost subquery to read:

select /*+ unnest no_merge */
 cta_facturac
from pfa_contabon
group by
 cta_facturac
having count(*) = 1

With those hints in place (and the unnest is probably
unnecessary) I believe the plan will aggregate the rows

from this copy of pfa_contabon before joining to the
other copy of pfa_contabon and the massive explosion in
volume won’t occur. Of course, it’s possible that with just
these two hints in place the optimizer may decide it has
to change the entire shape of the plan – hinting isn’t easy,
you have to be thorough – but as a starting point it’s the
minimum test we should try before we worry about doing
anything more complicated like a rewrite.

H A P P I LY E V E R A F T E R ?
It would be nice at this point to say that the owner of
the problem tested this suggestion and reported back that
the effect was amazing and the query was nearly as quick
as the fast query. Unfortunately silence fell and the OP was
never heard from again – it’s really rather disappointing
when someone asks for help, goes the extra step to supply
the information when requested, and then you don’t
hear whether your explanation and suggested solution
has worked.

On the plus side, we’ve been given an example of a
query that’s clearly a problem, and a good example of
the strategic approach needed when you have to work
outwards from the database without necessarily having
any business-oriented information about what the query
is trying to achieve and what the data means.

As a final thought, in this example the owner of the
problem was able to supply execution plans after enabling
rowsource execution statistics and re-running the queries.
In a production system there are two alternative methods
for acquiring the same information provided you’re
running 11g or later:

 �Enable sql_trace by SQL_ID for every execution
of the query – if it’s run more than once. The plan
dumped into the trace file will contain almost all the
information you need (though the “Starts” column
doesn’t appear until 12.2.0.1).
 �If you’re licensed for the diagnostic and
performance packs you can look at the output from
dbms_sql_monitor (dbms_sqltune until 12c) – if you
can execute the report_sql_monitor() procedure
within an hour or so of the query running. This, too,
will give you lots of run-time stats about the query –
though it won’t report the predicate information.
Any query taking more than five seconds, or running
parallel, will automatically be monitored.

For further notes on these two options see the following on
my blog (jonathanlewis.wordpress.com): sql_trace (dated
May 2014), and SQL Monitor (dated April 2018).

A B O U T T H E A U T H O R
Jonathan Lewis has more than 30 years’
experience using Oracle software. He has
published three books about Oracle, the most
recent being Oracle Core. He is semi-retired
but still does some online consulting.

28 #PTK www.ukoug.org

C
onnectivity agents help to integrate on-premise
applications with Oracle Integration Cloud (OIC).
The agent is required for OIC to exchange
messages with on-premises applications,
for example: Database, E-Business Suite,
REST/SOAP API etc.

P R E- R E Q U I S I T E S
The Oracle connectivity agent is certified with Oracle JDK
8+ and on the following operating systems:

 �Oracle Enterprise Linux 6.x
 �Oracle Enterprise Linux 7.2
 �Oracle Enterprise Linux 7.5
 �RedHat Enterprise Linux 6.6
 �RedHat Enterprise Linux 7.2
 �RedHat Enterprise Linux 7.5
 �Suse Linux Enterprise Edition 12 SP2
 �Windows Standard Edition 2016

It also requires:
 �8GB memory with 4GB heap size dedicated for
agent JVM
 �Either Internet connectivity or the OIC host name
whitelisted on the host machine

Note: Open JDK and others are not supported.

D O W N L O A D & R U N T H E C O N N E C T I V I T Y A G E N T
Create an Agent Group
Before we start agent installation, it’s necessary to create
an Agent Group. The reference of the agent group is
provided during the connectivity agent installation. In
order to create the Agent Group, you’ll need to perform
the following steps:

 Log in into the OIC console and navigate to the
“Integrations” navigation
 From the “Designer” menu, click “Agent”. You will land

on the “Agents” page
 On top of the page, look for the “Create Agent Group”

button

 Click on the “Create Agent Group” button – the

New Agent Group dialog is displayed
 Enter your information as follows and click on the

“Create” button:

Connectivity agent
installation on Linux
How to download and install the Oracle
connectivity agent on a host machine
– and how to leverage the agent group
to create a connection with an
on-premise Oracle DB.

1 0 - S E C O N D S U M M A R Y

 Connectivity agents
can be used to integrate
on-premise applications
to Oracle Integration
Cloud (OIC).

 This article covers the
steps needed to install and
run a connectivity agent.

 It also covers key areas
such as: how to monitor
the agent’s health, how
to run the agent in high
availability, and how to
delete an Agent Group,
as well as how upgrades
are managed.

By Ankur Jain

 #PTK 29

Field Description

Agent
Group
Name

Enter a meaningful name. The name must be
unique among all agent names. Below is the
criteria to enter the name:
 Letters (A-Z, a-z)
 Numbers (0-9)
 Spaces ()
 Special characters (_ -)

Identifier The identifier would be picked up automatically
based on the name you enter, but in upper case
– but you can edit it.
Note: Once the agent group is created it cannot
be updated, but you can delete it

Agent Type By default, Connectivity Agent is displayed and
cannot be updated

Description Enter a meaningful description

 The moment you click on the “Create” button, the agent
group will be shown on the “Agents” page. A success
message will be shown on the top. Initially the count
will be shown as 0. Once connectivity is installed using
the agent group identifier, the count will increase
automatically. (We’ll see more on this later in the article.)

Download connectivity agent

 In the left navigation pane, click “Integrations”, then
click “Agents”
 Click “Download > Connectivity Agent”

 A zip file oic_connectivity_agent.zip will be downloaded

Run connectivity agent
Now you’ll need to follow these steps in order to install the

connectivity agent:
 Move the agent installer on the host machine and

unzip the file oic_connectivity_agent.zip
 Find the “InstallerProfile.cfg” and input the following

information:

Required Parameters

oic_URL format should be https://hostname:ssl

Port oic_URL=
agent_GROUP_IDENTIFIER=

#Optional Parameters
oic_USER=
oic_PASSWORD=

Proxy Parameters
proxy_HOST= proxy_PORT=
proxy_USER=
proxy_PASSWORD=
proxy_NON_PROXY_HOSTS=

Property Description Sample Value

oic_URL HTTPS URL for the Oracle
Integration host. The port
is 443.

https://xxxx.
integration.ocp.
oraclecloud.
com:44 3

agent_GROUP_
IDENTIFIER

This is the identifier for
the connectivity agent
group created in Oracle
Integration. The identifier
name is case sensitive.

TEST_AGENT

oic_USER Oracle Integration
username. When the
agent runs for the first
time, this field, if
provided, is encrypted in
the properties file. If this
field is not provided, you
are prompted to enter
the username at agent
startup and it is not
persisted with.

ankur

oic_
PASSWORD

Oracle Integration
password. When the
agent runs for the first
time, this field, if
provided, is encrypted in
the properties file. If this
field is not provided, you
are prompted to enter
the password at agent
startup and it is not
persisted with.

welcome@123

proxy_HOST These parameters are
required only if the
connectivity agent is
used with a proxy.

12.11.44.11

proxy_PORT 1211

proxy_USER User

proxy_
PASSWORD

Password

proxy_NON_
PROXY_HOSTS

example.com

30 #PTK www.ukoug.org

Sample file

Required Parameters
oic_URL format should be https://hostname:sslPort
oic_URL=https://xxxx.integration.ocp.oraclecloud.
com:443
agent_GROUP_IDENTIFIER=TEST_AGENT

Proxy Parameter
proxy_HOST=
proxy_PORT=
proxy_USER=
proxy_PASSWORD=
proxy_NON_PROXY_HOSTS=

 Set the “JAVA_HOME” property to the location of the
JDK installation
 Set the “PATH” property

export JAVA_HOME=/home/opc/jdk/jdk1.8.0_221
export PATH=$JAVA_HOME/bin:$PATH

 Run the connectivity agent installer from the
command prompt: “java -jar connectivityagent.jar”

 Enter OIC username and password when prompted

 Once it is installed, a success message will appear:

Done with Agent installation & configuration... Starting
Agent for message processing.

Agent started successfully... Now available for new
messages...

C R E AT E A C O N N E C T I O N W I T H A N A G E N T G R O U P
After the successful installation of the connectivity agent,
we can create a connection with the on-premises application.
Only Agent Groups whose status is green in the monitoring
tab can be used to build a connection.

In order to create a connection, take the following steps:
 From the Oracle Integration home page, click “Integrations

> Connections”
 Click on the “Create” button and select the Adapter. In this

case, select “Oracle Database”

 From the connection dialog box, enter the following
information and click on the “Create” button:
- Name: Enter a meaningful name
- Identifier: Enter the unique identifier
- Role: Select role either Invoke or Trigger or
Trigger and Invoke
- Description: Enter the description (optional)

 Click on the “Configure Connectivity” button, enter
the following information and click the “OK” button:
- Host: Enter database hostname or IP address
- Port: Enter database port
- SID: Enter Service ID

Click on the “Configure Security” button, enter the following
information and click the “OK” button:
- Username: Enter database username
- Password: Enter database password
- Confirm Password: Confirm database password
- Click on the “Configure Agent” button, choose the available
agent and click the “Use” button

 Click on the “TEST button from the top right corner. This test
executes the ping command on the on-premises instance
when the connection is associated with an agent. The test
should be performed successfully.

M O N I T O R I N G T H E A G E N T
You need to check the health of the connectivity agent from
time to time to see if it is up and running or not. In order to do

 #PTK 31

TECH | CONNECTIVITY AGENT

A B O U T T H E A U T H O R
Ankur Jain is an Oracle ACE Associate and
General Manager at Nile Technologies where
he manages the integration delivery for one
of the organisation’s prestigious clients. You
can find his blogs at: www.techsupper.com
and youtube.com/TechSupper

this, take the following steps:
 From the Oracle Integration home page, navigate to

“Monitoring > Agents”
 Find the Agent – the Green icon means the agent is ready

to serve messages

 Red means the agent is down and can’t serve messages

C O N N E C T I V I T Y A G E N T I N H I G H AVA I L A B I L I T Y
The connectivity agent can be installed in high availability
by installing the agent twice on different hosts. During the
installation of the agent, you should use the same agent
group identifier.

Some points to keep in mind:
 The file adapter doesn’t support high availability

environments.
 Only two connectivity instances can be installed per

agent group.
 Both hosts on which the agent is installed must have the

same network set-up.
 You can install the agent on the same host machine but it

is not recommended. Install the agent on different hosts to
utilise high availability.
 Ensure both the agent instances can access the same

endpoints.

R E S TA R T I N G T H E A G E N T
We can start the connectivity agent whenever required.
1	 Stop the agent in either of the following ways:
- Enter Ctrl + C on the host where the agent is running
- Search for the connectivity agent process and kill it

2	 Restart the agent
java -jar connectivityagent.jar

U P G R A D I N G T H E C O N N E C T I V I T Y A G E N T
When a new version is available for the connectivity agent,
your host is automatically upgraded without any intervention
required. When Oracle Integration is upgraded, the agent is
upgraded within a four-hour window. This is online activity
and there should be no downtime or interruption of the
services that are running.

The connectivity agent upgrade occurs as follows:
1	� A check is made of the version of the agent installed on

your on-premises host.
2	� If the agent version on your host is older than the latest

available version, the new version is downloaded to
your host.

3	 The downloaded ZIP file is unzipped.

4	 A back-up directory is created.
5	� A back-up copy is made of your existing installation in the

new back-up directory.
6	� Older artefacts are replaced in the agent home directory

of your installation.
7	 The endpoints are quiesced.
8	 The agent is shut down and restarted.
9	 You are notified of the upgrade success.

D E L E T I N G A N A G E N T G R O U P
The Agent Group can only be deleted if it is not associated
with any connection and if the agent is not running. To delete
an Agent Group, first stop the connectivity agent and then
remove the Agent Group reference from the connection
wherever the Agent Group is being used.

In order to delete an agent group, perform the following steps:
 Enter Ctrl + C or kill the connectivity agent process using

this command:
kill -9 agent_PID_number

The “agent_PID_number” can be found in the
“AGENT_INSTALL_DIRECTORY/pid” file

 From the Oracle Integration home page, click
“Integrations > Agents”
 Find the agent group to delete. If the number count for

the agent group is zero, you can delete the agent. Otherwise,
you must first click the number (it can be 1 or 2). Delete
those agent instances first. If any connections are using
the agent, you cannot delete the agent instance.

 From the hamburger menu, select “Delete”.

 Finally, select “Yes” when prompted to confirm.

As usual, we’ve divided #PTK into two halves – one for UKOUG’s
Business Apps community and one for our Tech community.

They’re both related, as are our two communities, and we’re sure
everyone will find each half useful.

Now take a look at Business Apps to see what we mean.

We’d love to hear what you think of #PTK,
what you like and dislike about this issue, and any ideas

you have for future editions – after all, this is your
magazine and a key benefit of UKOUG membership.
So please send your comments and suggestions to:

editor@ukoug.org

Online#PTK
You can vIew this latest
issue online and access
the archive of #PTK and

Oracle Scene editions here:
ukoug.org/ptk

Online#PTK

Check out the
Business Apps Edition

