Sleep and Self-care Prevention for the Nurse

Sandra A. Carey, PhD, MPH, CCRN, ANP-BC

• I serve as a consultant for both Respicardia® and Itamar Medical $^{\text{\tiny TM}}$

Objectives

By the end of this presentation, you will be able to...

- Describe/Educate on Sleep Hygiene
- Describe/Educate on Sleep
 Disorders and its impact on overall health
- Describe and discuss occupation hazards for sleep deprivation in Nursing
- Discuss the contribution of sleepdisordered breathing to the development and progression of heart failure.
- Discuss types of sleep apnea, screening, testing and current treatment modalities

Sleep Hygiene

How Much Sleep Do I Need?

Age Group		Recommended Hours of Sleep Per Day ^{1.}
Newborn	0–3 months	14–17 hours (National Sleep Foundation) No recommendation (American Academy of Sleep Medicine)
Infant	4–12 months	12–16 hours per 24 hours (including naps)
Toddler	1–2 years	11–14 hours per 24 hours (including naps)
Preschool	3-5 years	10-13 hours per 24 hours (including naps)
School Age	6-12 years	9–12 hours per 24 hours
Teen	13-18 years	8-10 hours per 24 hours
Adult	18–60 years	7 or more hours per night
	61-64 years	7–9 hours
	65 years and older	7–8 hours

Factors That Impact Sleep Quality

- Sleep environment sleep habits' (traffic/television noise, room temperature, excessive lighting, irregular sleep schedule, and changes in sleep hours
- Emotional stress (e.g., nervousness, hostility, anxiety, and depression)
- Eating habits (e.g., diet, consumption of drinks with caffeine and/or alcohol, and tobacco use;
- Exercise (e.g., inactivity, exercise with inappropriate intensity/duration, and lack of aerobic exercise;
- Physiologic changes (e.g., changes in neuroendocrine hormones, body temperature, pregnancy; menopause; and disease symptoms)

What is Sleep Hygiene

- Strong sleep hygiene means having both a bedroom environment and daily routines that promote consistent, uninterrupted sleep.
- Keeping a stable sleep schedule, making your bedroom comfortable and free of disruptions
- Following a relaxing pre-bed routine
- Building healthy habits during the day can all contribute to ideal sleep hygiene.

The 10 Sleep Hygiene Commandments

1	Exercise regularly	
2	Get sunlight during the day	
3	Keep your bedroom cool, dark and comfortable	
4	Don't go to bed too hungry or too full	
5	Avoid excessive liquid consumption in the evening	
6	No caffeine, nicotine or alcohol near bedtime	
7	Don't go to bed angry, worried or upset	
8	Avoid digital devices in the bedroom anddon't use your phone as an alarm clock	
9	Don't nap too long or too late during the day	
10	Set regular schedule for sleep and stickto it even during weekends and holidays	

HappyMaven

Sleep
Disorders and its impact on overall health

Unmet Public Health Problem

- It is estimated 50 to 70 million Americans suffer from a chronic disorder of sleep and wakefulness.
- Billions of dollars annually are spent on direct medical costs hospital services, prescriptions, and over-the-counter medications.
- Nearly 20% of all serious MVA in the general population are associated with driver sleepiness, independent of alcohol effects.
- However, given this burden, awareness among the general public and health care professionals is low.
- The current clinical and scientific workforce is not sufficient to diagnose and treat individuals with sleep disorders.

The cumulative long-term effects of sleep deprivation and sleep disorders have been associated with a wide range of deleterious outcomes, to include increased risk of hypertension, diabetes, obesity, depression, heart attack, and stroke.

The majority of people with sleep disorders are frequently under diagnosed. Compared to healthy individuals, those suffering from sleep loss and sleep disorders are less productive, have an increased health care utilization, and have an increased likelihood of injury

Occupation
Hazards for Sleep
Deprivation in
Nursing

Shift Work

- Shift work is a significant health risk factor in nursing
- Disruption of sleep-wake cycle in shift workers causes symptoms such as fatigue, drowsiness, insomnia, digestive problems, irritability, decreased mental activity, and degradation of individual performance.
- Work productivity and safety in night shift is at its lowest
- Shift work increases the risk of some diseases in long-term. These include the risk of cardiovascular disease, diabetes, mood disorders, and cancers.
- One of the most common problems in shift workers is shift work sleep disorders (SWSD)

SWSDs are caused by disruption of circadian rhythm of sleep and wake and are characterized by excessive daytime sleepiness and insomnia.

The prevalence of SWSDs is more than 30% in shift workers and its prevalence increase with aging

Due to the high prevalence of SWSDs, research has been aimed at training shift workers appropriate sleep hygiene.

Tips to improve sleep and alertness

Get some exercise and eat light, healthy meals and snacks during your shift.

Keep the work environment brightly lit

After a night shift, wear sunglasses or amber-tinted glasses when outside.

To reduce the potential for drowsy driving, get a ride, take a cab or public transit, or use a ridesharing service.

Avoid caffeine.

Prioritize your sleep: avoid running errands or doing chores after your shift.

Never use alcohol as a sleep aid

Turn off mobile devices before going to bed

- Given the large numbers of nurses who report struggling to stay awake when driving home from work and the frequency with which nurses reported drowsy driving, greater attention should be paid to increasing nurse awareness of the risks and to implementing strategies to prevent drowsy driving episodes to ensure public safety.
- Without mitigation, fatigued nurses will continue to put the public and themselves at risk.

Scott, Hwang, Rogers, Nysse, Dean; Dinges SLEEP 2007

The contribution of sleep-disordered breathing (SDB) to the development and progression of heart failure.

Systemic Effects of SDB

Sleep Apnea Syndromes and HF

Mentz RJ, et al. Heart Fail Clin 2013 Kasai T, J Am Coll Cardiol. 2011;57(2):119-27. JACC: HEART FAILURE
© 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER

VOL. 4, NO. 2, 2016 ISSN 2213-1779/\$36.00 http://dx.doi.org/10.1016/j.jchf.2015.09.014

Prevalence and Predictors of Sleep-Disordered Breathing in Patients With Stable Chronic Heart Failure

The SchlaHF Registry

Michael Arzt, MD,^a Holger Woehrle, MD,^{b,c} Olaf Oldenburg, MD,^d Andrea Graml, DIPL STAT,^c Anna Suling, PhD,^e Erland Erdmann, MD,^f Helmut Teschler, MD,^g Karl Wegscheider, PhD,^e for the SchlaHF Investigators

TABLE 4 Risk Factors	for SDB in Chro	onic Heart	Failure					
First Author, Year (Ref.)	Setting	Patients (n)	Source of Patients	SDB Diagnosis	Female, n (%)	β-Blocker (%)	Spironolactone (%)	Risk Factors for SDB
Sin et al., 1999 (13)	Single center	450	Sleep laboratory referrals	PSG	68 (15)	0	0	CSA: male, age ≥60 yrs, Pco ₂ ≤38 mm Hg, AF OSA: BMI (men); age (women)
Yumino et al., 2009 (14)	Single center	218	Heart failure clinic	PSG	50 (23)	75	21	CSA: male, age, AF, lower Pco ₂ , diuretic use OSA: male, age, BMI
MacDonald et al., 2008 (26)	Single center	108	Heart failure clinic	SDB-screening device	16 (15)	82	36	SDB: AF, NYHA functional class
Arzt et al. (SchlaHF)	Multicenter	6,876	Cardiology practices and hospital departments	SDB-screening device	1,448 (21)	89	47	SDB: Male, age, BMI, LVEF, AF (no sex differences for significant risk factors)

AF = atrial fibrillation; CSA = central sleep apnea; OSA = obstructive sleep apnea; Pco₂ = carbon dioxide pressure; PSG = polysomnography; pts = patients; SchlaHF = Sleep-Disordered Breathing in Heart Failure; other abbreviations as in Table 1.

Types of Sleep Apnea

Complex

Controversy remains as to whether complex sleep apnea represents an independent and sustained sleep related breathing disorder, or whether it is a temporary occurrence that eventually abates with continued PAP therapy.

Further studies to resolve this debate are warranted*

Sleep Apnea is an Interruption in Breathing During Sleep

*American Academy of Sleep Medicine, 2016

TABLE I.

Definition of Sleep-Related Breathing Disorders

Apnea	Cessation of airflow for at least 10 seconds or more
Hypopnea	Reduction of airflow with resultant oxygen desaturation of ≥4%
Apnea-hypopnea index	Average frequency of apnea and hypopnea events per hour of sleep
Obstructive sleep apnea	AHI of ≥15 or ≥5 associated symptoms such as excessive day- time sleepiness, impaired cognition, mood disorders, insomnia, hypertension, heart disease, or history of stroke
Central sleep apnea	AHI of ≥5 or ≥50% of the respiratory events occurring without any inspiratory effort—associated with symptoms of either excessive daytime sleepiness or disrupted sleep

Note: It is the presence of inspiratory effort during apneas and hypopneas that distinguishes predominantly obstructive sleep apnea

Survival – Heart failure (LVEF< 45%) with CSA patients vs. heart failure with normal breathing in NIH sponsored study

HF combined with CSA is associated with a 2-fold increase in risk of death

Hazard ratios				
CSA vs. no or minimal SDB	OSA vs. no or minimal SDB			
2.17 <i>p</i> < 0.001	2.00 <i>p</i> < 0.001			

Khayat et al. Eur Heart J 2015; 36:1463-9

Screening, Testing and New Therapy Optionsoh my!

"OK, Mrs. Tully. We want you to relax, get a good night's sleep, and we'll evaluate any sleep issues that you have."

Pre-Screening Tools – What is the right questionnaire?

Sleep Apnea HURTS HEARTS!

It is especially important for patients in high-risk groups to be screened using a validated OSA questionnaire (e.g., STOP-BANG or Berlin).

Because:

"Sleep Apnea Hurts HEARTS," the American Academy of Sleep Medicine recommends an annual screening for all adult patients who have:

H – heart failure

E – elevated blood pressure

A – atrial fibrillation (A-fib)

R – resistant hypertension

T – Type 2 diabetes

S – stroke

2017 ACC/AHA/HFSA Focused Guideline Update

Yancy et al. 2017 ACC/AHA/HFSA Heart Failure Focused Update JACC VOL. 70, NO. 6, 2017 AUGUST 8, 2017:776-803

9.6. Sleep-Disordered Breathing: Recommendations

(Moved from Section 7.3.1.4, Treatment of Sleep Disorders in the 2013 HF guideline.)

Recommendations for Treatment of Sleep Disorders

COR	LOE	RECOMMENDATIONS	COMMENT/RATIONALE
lla	C-LD	In patients with NYHA class II-IV HF and suspicion of sleep-disordered breathing or excessive daytime	NEW: Recommendation reflects clinical necessity to distinguish obstructive versus central sleep apnea.
See Online Data	a Supplement G.	sleepiness, a formal sleep assessment is reasonable (200,201).	

Sleep disorders are common in patients with HF. A study of adults with chronic HF treated with evidence-based therapies found that 61% had either central or obstructive sleep apnea (202). It is clinically important to distinguish obstructive sleep apnea from central sleep apnea, given the different responses to treatment. Adaptive servo-ventilation for central sleep apnea is associated with harm (203). Continuous positive airway pressure (CPAP) for obstructive sleep apnea improves sleep quality, reduces the apnea-hypopnea index, and improves nocturnal oxygenation (200,201).

In patients with sleep apnea, a trial evaluated the impact of CPAP with usual therapy versus usual therapy alone on subsequent cardiovascular events, including HF (204). In this RCT of >2,700 patients, there was no evidence of benefit on cardiovascular events at a mean follow-up of 3.7 years for CPAP plus usual care compared with usual care alone. Improvements in sleep quality were noteworthy and represented the primary indication for initiating CPAP treatment (204). However, in patients with atrial fibrillation (AF) (a frequent comorbidity noted with HF), the use of CPAP for obstructive sleep apnea was helpful. In a trial of 10,132 patients with AF and obstructive sleep apnea, patients on CPAP treatment were less likely to progress to more permanent forms of AF than were patients without CPAP (205).

Mortality rate (all raise and cardiovascular) was higher with adaptive serve ventilation rules CDMT than with CDMT alone in a single DCT to test the

Testing Recommendations for suspected Sleep Apnea

- (Strong) Use of clinical tools or questionnaires to help diagnose, specifically in the absence of recent PSG or HST
- (Strong) Testing with either PSG or HST be used to diagnose OSA in the uncomplicated adult patient with increased risk profile for OSA
- (Strong) If a single home study test is negative, inconclusive or technically inadequate repeat PSG for confirmation of diagnosis of OSA

Rec	ommendation Statement	Strength of Recommendation	Evidence Quality	Benefits versus Harms	Patient Values and Preferences
1.	We recommend that clinical tools, questionnaires or prediction algorithms not be used to diagnose OSA in adults, in the absence of PSG or HSAT.	Strong	Moderate	High certainty that harms outweigh benefits	Vast majority of well-informed patients would most likely not choose clinical tools, questionnaires or prediction algorithms for diagnosis
2.	We recommend that PSG, or HSAT with a technically adequate device, be used for the diagnosis of OSA in uncomplicated adult patients presenting with signs and symptoms that indicate an increased risk of moderate to severe OSA.	Strong	Moderate	High certainty that benefits outweigh harms	Vast majority of well-informed patients would want PSG or HSAT
3.	We recommend that if a single HSAT is negative, inconclusive or technically inadequate, PSG be performed for the diagnosis of OSA.	Strong	Low	High certainty that benefits outweigh harms	Vast majority of well-informed patients would want PSG performed if the initial HSAT is negative, inconclusive, or technically inadequate
4.	We recommend that PSG, rather than HSAT, be used for the diagnosis of OSA in patients with significant cardiorespiratory disease, potential respiratory muscle weakness due to neuronuscular condition, awake hypoventilation or suspicion of sleep related hypoventilation, chronic opioid medication use, history of stroke or severe insomnia.	Strong	Very Low	High certainty that benefits outweigh harms	Vast majority of well-informed patients would most likely choose PSG to diagnose suspected OSA
5.	We suggest that, if clinically appropriate, a split-night diagnostic protocol, rather than a full-night diagnostic protocol for PSG be used for the diagnosis of OSA.	Weak	Low	Low certainty that benefits outweigh harms	Majority of well-informed patients would mos likely choose a split-night diagnostic protocol to diagnose suspected OSA
6.	We suggest that when the initial PSG is negative, and there is still clinical suspicion for OSA, a second PSG be considered for the diagnosis of OSA.	Weak	Very low	Low certainty that benefits outweigh harms	Majority of well-informed patients would mos likely choose a second PSG to diagnose suspected OSA when the initial PSG is negative and there is still a suspicion that OSA is present

Current Testing Guidelines

American Academy of Sleep Medicine 2017

Home Sleep Testing

Diagnostic Options in the Setting of a Pandemic

Home Sleep Testing

HST is an alternative to PSG in the diagnosis of potentially both obstructive and central sleep apnea.

Patients can be evaluated in their own habitual environment rather than in a sleep lab.

The use of HST provides a less stress-inducing option for patients and a more financially efficient method for the evaluation of SAS.

One HST test option utilizes the peripheral arterial signal testing measuring (peripheral arterial tonometry, heart rate, oximetry, actigraphy, body position, snoring and chest motion) via three points of contact (wrist, finger and chest).

What is Home Sleep Testing?

Diagnostic Capabilities

Sleep Study Report Sleep Summary Start Study Time: 2:40:16 AM 7:45:05 AM End Study Time: Total Recording Time: 5 hrs, 4 min 4 hrs, 25 min **Total Sleep Time** % REM of Sleep Time: 14.2 Respiratory Indices **Total Events** REM NRE pRDI: 32

		Total
EM	All Night	Oxygen S
7.4	7.7	Duration
7.1	7.3	Sleep %
1.6	1.8 0.0	Pulse Rate
J.U	0.0	Mean:

Indices are calculated using technically valid sleep time of 4 hrs, 24 min.

8.0

3.2

0.0

pRDI/pAHI are calculated using oxi desaturations ≥ 3%

8

0

0.0

Mean: Mean of De		Minimum: ns Nadirs (%		7 Maximu	ım:	98 91
Oxygen De	satur. %	:	4-9	10-20	>20	Total
Events Num	ber		8	0	0	8
Total			100.0	0.0	0.0	100.0
Oxygen Sa	turation:	<90	<=88	<85	<80	<70
Duration (m	inutes):	2.6	0.4	0.0	0.0	0.0
Sleep %		1.0	0.1	0.0	0.0	0.0
Pulse Rate S	tatistics	during Slee	p (BPM))		
Mean:	46	Minimum:	40	Max	imum:	83

Body Position Statis	stics						
Position	Supine	Prone	Right	Left	Non-Supine		
Sleep (min)	189.5	16.3	23.0	36.5	75.8		ne Right
Sleep %	71.4	6.1	8.7	13.8	28.6	Left	
pRDI	9.2	3.8	10.5	0.0	4.0		Supine
pAHI	8.9	3.8	7.9	0.0	3.2		
ODI	2.5	0.0	0.0	0.0	0.0		
noring Statistics							
Snoring Level (dB)	>40	>50	>60	>70	>80	>Threshold (45)	Mean: 40 dB
Sleep (min)	18.6	2.8	0.9	0.1	0.0	5.1	
Sleep %	7.0	1.0	0.3	0.0	0.0	1.9	

Sleep/Wake States		Sleep Stages
Water Steep Steep Steep Latency (mir REM Latency (mir Number of Water)	107	Deep REM Light

^{*} Reference values are according to AASM guidelines

pAHI:

ODI:

pAHIc:

% CSR:

Limited Treatment Options for **Central Sleep** Apnea

CPAP	 Most common CSA treatment Clinical trials demonstrated improvement in AHI and EF CANPAP showed no improvement in QoL or M&M and was stopped early for safety Does not have an FDA approved indication to treat CSA
ASV (Adaptive servoventilation)	 Largest randomized study in CSA (SERVE-HF n=1325) Showed and improvement in AHI but no improvement in QoL No difference in M&M, but increased cardiovascular mortality in patients with EF < 45% Black box warning and Class III recommendation against use in patients with EF < 45%
Oxygen Therapy	 Small randomized studies show improvement in AHI, but no improvements in arousals or daytime sleepiness Does not have a FDA approved indication to treat CSA
MedicationsTheophyllineAcetazolamide	 Both studied in short (<3 month) studies with < 20 patients Does not have a FDA approved indication to treat CSA

Transvenous phrenic nerve stimulation Therapy

- Fully implantable system with an indication to treat moderate to severe central sleep apnea in adults; received U.S. FDA PMA approval October 2017
- **Stabilizes breathing** by activating the diaphragm to generate negative pressure in the chest (similar to natural breathing)
- Turns on automatically at night, ensuring nightly compliance and adherence over time
- Implanted by cardiac electrophysiologists (EPs)
 - Pulse generator implanted below clavicle
 - Stimulation lead placed either in left pericardiophrenic or right brachiocephalic vein
 - Sensing lead placed in the Azygos vein, helps optimize therapy (optional)

Comparison of Normal Inspiration with CSA Therapies

Normal Breathing

Diaphragm *pulls* air into the lungs

Mask Therapies (ASV, CPAP)

Ventilation *pushes* air into the lungs via positive intrathoracic pressure

PNS Therapy

pulls air into the lungs using the same mechanism of action as normal breathing

Continuous Pulmonary Airway Pressure Support

CPAP – Front Line Treatment for OSA

Great Results When Used Regularly

However...Some patient's can't acclimate

OSA Therapy Options

Hypoglossal Nerve Stimulation

? Sleep Apnea in Patients Post Advanced HF therapies

- Many Advanced HF patients are never been screened, let alone tested prior to being referred for advanced therapies
- For patients with a history of SBD there is a presumed resolution or marked improvements post left ventricular assist device or transplantation that will not require continuing sleep therapies
- Significant risks for worsening of sleep apnea resulting in limited response to advanced HF therapies
- EXTREME PAUSITY OF DATA IN THIS PATIENT POPULATION

?OSA In Cardiac Transplant

Untreated OSA had 3x risk of Late Graft
Dysfunction

The Effect of Obstructive Sleep Apnea on 3-Year Outcomes in Patients Who Underwent Orthotopic Heart Transplantation

Aasim Afzal, MD, MBA^{a,b,*}, Kristen M. Tecson, PhD^c, Aayla K. Jamil, MPH^b, Joost Felius, PhD^b, Puneet S. Garcha, MD^a, Shelley A. Hall, MD^{a,b}, and Sandra A. Carey, PhD^d

Despite the well-known association between obstructive sleep apnea (OSA) and cardiovascular disease, there is a paucity of data regarding OSA in orthotopic heart transplant (OHT) recipients and its effect on clinical outcomes. Hence, we sought to determine the association between OSA, as detected by polysomnography, and late graft dysfunction (LGD) after OHT. In this retrospective review of consecutive OHT recipients from 2012 to 2014 at our center, we examined LGD, i.e., graft failure >1 year after OHT, through competing risks analysis. Due to small sample size and event counts, as well as preliminary testing which revealed statistically similar demographics and outcomes, we pooled patients who had treated OSA with those who had no OSA. Of 146 patients, 29 (20%) had untreated OSA, i.e., OSA without use of continuous positive airway pressure therapy, at the time of transplantation. Patients with untreated OSA were significantly older, heavier, and more likely to have baseline hypertension than those with treated/no OSA. Although there were no differences between groups in regard to short-term complications of acute kidney injury, cardiac allograft vasculopathy, or primary graft dysfunction, there were significant differences in the occurrence of LGD. Those with untreated OSA were at 3 times the risk of developing LGD than those with treated/no OSA (hazard ratio 3.2; 95% confidence interval 1.3 to 7.9; p = 0.01). Because OSA is a common co-morbidity of OHT patients and because patients with untreated OSA have an elevated risk of LGD, screening for and treating OSA should occur during the OHT selection period. Elsevier Inc. All rights reserved. (Am J Cardiol 2019;124:51-54)

Thank You!

© Randy Glasbergen www.glasbergen.com

"I'm the Apnea Fairy. I have orders to give you a wake up call at 10:30, 10:47, 10:53, 11:02, 11:17, 11:26..."