American Association of Zoo Veterinarians Infectious Disease Committee Manual 2013 ENCEPHALITOZOONOSIS / ENCEPHALITOZOON CUNICULI

Animal	Transmission	Clinical Signs	Severity	Treatment	Prevention and	Zoonotic	
Group(s)		C C			Control		
Affected							
Rabbits;	Ingestion of	Asymptomatic;	Frequently	Variably	Environmental	Yes.	
rodents;	environmentally	neurologic;	asymptomatic	successful;	sanitation to		
canids; and	resistant spores	nephritis to	in immuno-	prolonged	prevent spore		
sporadic	passed in	end-stage renal	competent	benz-	contamination.		
cases in a	urine/feces of	failure; uveitis	adult animals.	imidazoles.			
variety of	infected host;						
mammals	transplacental.		However,				
			progressive				
			disease can be				
			fatal.				
Fact Sheet compiled by: Karen Snowden							
Sheet completed on: 26 September 2013							
Fact Sheet Reviewed by: Elizabeth Didier; Susan Rohrer; Meredith M. Clancy							
Susceptible animal groups: Domestic rabbits, rodents (mice, rats, muskrats, guinea pigs, hamsters, ground							
shrews), domestic dog; sporadic cases reported in a variety of wild carnivores including farmed blue fox							
(Alopex lagopus), wild red fox (Vulpes vulpes), martens (Martes spp.) and mink (Mustela vison). Sporadic							
natural infections reported in several species of non-human primates, including squirrel monkeys (Saimiri							
sciureus), emperor tamarins (Saguinus imperator), Goeldi's monkeys (Callimico goeldii), and experimental							
infections reported in vervet monkeys (Cercopithecus pygerythrus).							
Causative organism: Encephalitozoon cuniculi; phylum Microsporidia (intracellular eukaryotic single-celled							
organism; classified by some as protozoa, by others as fungi)							
Zoonotic potential: Yes, immunocompromised human cases reported. Direct animal to human transmission							
has not been reported although molecular characterization shows animal and human genotypes identical.							
Distribution : Ubiquitous; worldwide from tropical to temperate to cold climates.							

Incubation period: Poorly defined in natural infections and dependent on spore dose. Death in experimentally infected puppies in 2-8 weeks and in experimentally infected immune deficient mice 10-27 days.

Clinical signs: Most frequently, the infection is asymptomatic in immunocompetent adult animals. Progressive neurologic signs including ataxia, head tilt, circling, head pressing, can present in rabbits and canids. Progressive glomerulonephritis to end-stage renal failure can occur in dogs. Uveitis, sometimes with cataract development, can occur in rabbits.

Post mortem, gross or histologic findings: Encephalitis with multifocal to disseminated mononuclear or granulomatous inflammatory infiltrates and perivascular cuffing in the brain; glomerulonephritis; uveitis with cataract formation; intracellular organisms commonly seen in vascular endothelium of brain, glomeruli and renal tubular epithelium of kidney.

Diagnosis: Microscopically, the Gram positive organisms can be visualized in histologic sections; microscopically visualized spores in body secretions such as urine sediment or CSF using modified trichrome stain or chitin-binding Calcofluor or Fungi-Fluor stain; PCR of tissue samples; detect parasite-specific antibodies using IFA or ELISA.

Material required for laboratory analysis: tissue, body fluids for staining and microscopy to visualize intracellular organisms or spores; tissue, body fluids for PCR; serum for antibody detection (IFA, ELISA). **Relevant diagnostic laboratories**: Serologic screening is available for rodent/rabbit species through major

American Association of Zoo Veterinarians Infectious Disease Committee Manual 2013 ENCEPHALITOZOONOSIS / ENCEPHALITOZOON CUNICULI

laboratory research animal vendors. Molecular diagnostic testing is available only through research labs, not commercially available.					
Charles River Laboratories					
1-877-274-8371					
A list of locations can be found at: http://www.criver.com/about-us/locations					
IDEXX Reference Laboratories					
One IDEXX Drive					
Westbrook, Maine 04092					
1-888-433-9987					
A list of locations can be found at: http://www.idexx.com/					
Treatment: Prolonged administration of albendazole has been used in humans and anecdotally used					
successfully in dogs. Prolonged administration of fenbendazole has been reported in rabbits.					
Prevention and control: Environmental sanitation very important to prevent contamination with					
environmentally resistant spores; transmission of spores via fomites is probable. Research rodent/rabbit					
colonies use a serologic test and cull approach to eliminate carrier animals.					
Suggested disinfectant for housing facilities: Environmentally resistant spores can be inactivated by					
chlorine, peroxide and other disinfectants with adequate contact time.					
Notification: Not reportable in animals or humans.					
Measures required under the Animal Disease Surveillance Plan: None.					
Measures required for introducing animals to infected animal: Not recommended. Asymptomatic					
seropositive animals can shed parasite spores intermittently for months/years, posing risk of exposure of					
introduced uninfected animals to environmentally resistant spores.					
Conditions for restoring disease-free status after an outbreak: Remove seropositive animals from					
population; rigorous environmental cleanup and disinfection					
Experts who may be consulted:					
Karen Snowden					
Texas A&M University					
Dept. of Veterinary Pathobiology, #4467					
College Station, TX 77843-4467					
(979) 862-4999					
ksnowden@cvm.tamu.edu					
References:					

- Akerstedt, J., K. Nordstoga, A. Mathis, E. Smeds, and P. Deplazes. 2002. Fox encephalitozoonsis: isolation of the agent from an outbreak in farmed blue foxes (*Alopex lagopus*) in Finland and some hitherto unreported pathologic lesions. J. Vet. Med. Series B. 49(8): 400-405.
- 2. Baneaux, P.J., and F. Pognan. 2003. *In utero* transmission of *Encephalitozoon cuniculi* strain type I in rabbits. Lab. Anim. 37: 132-138.
- 3. Cray, C., and Y. Rivas, Y. 2013. Seroprevalence of *Encephalitozoon cuniculi* in dogs in the United States. J. Parasitol. 99(1): 153-154.
- Dado, D., F. Izquierdo, O. Vera, A. Montoya, M. Mateo, S. Fenoy, A.L. Galván, S. García, A. García, E. Aránguez, L. López, C. del Águila, and G. Miró. 2012. Detection of zoonotic intestinal parasites in public parks of Spain. Potential epidemiological role of *Microsporidia*. Zoonoses Pub. Health. 59: 23-28.
- 5. Didier, E.S. 2005. Microsporidiosis: an emerging and opportunistic infection in humans and animals.

American Association of Zoo Veterinarians Infectious Disease Committee Manual 2013 ENCEPHALITOZOONOSIS / ENCEPHALITOZOON CUNICULI

Acta Trop. 94: 61-76.

- 6. Didier, E.S. 1995. Comparison of three staining methods for detecting microsporidia in fluids. J. Clin. Microbiol. 33(12): 3138-3145.
- 7. Franzen, C., and A. Muller. 1999. Molecular techniques for detection, species differentiation and phylogenetic analysis of microsporidia. Clin. Microbiol. Rev. 12(2): 243-285.
- Giordano, C., A. Weigt, A. Vercelli, M. Rondena, G. Grilli, and C. Guidice. 2005. Immunohistochemical identification of *Encephalitozoon cuniculi* in phacoclastic uveitis in four rabbits. Vet. Ophthal. 8(4) 271-275.
- 9. Harcourt-Brown, F.M., and H.K.R. Holloway. 2003. *Encephalitozoon cuniculi* in pet rabbits. Vet. Rec. 152: 427-431.
- 10. Illanes, O.G., E. Tiffani-Castiglioni, J.F. Edwards, and J.A. Shadduck. 1993. Spontaneous encephalitozoonosis in an experimental group of guinea pigs. J. Vet. Diagn. Invest. 5: 649-651.
- 11. Johnson, C.H., M.M. Marshall, L.A. DeMaria, J.M. Moffet, and D.G. Korich. 2003. Chlorine inactivation of spores of *Encephalitozoon* spp. Appl. Environ. Microbiol. 69(2): 1325-1326.
- 12. Mathis, A., R. Weber, and P. Deplazes. 2005. Zoonotic potential of the microsporidia. Clin. Microbiol. Rev. 18(3): 423-445.
- 13. Muller-Doblies, U.U., K. Herzog, I. Tanner, A. Mathis, and P. Deplazes. 2002. First isolation and characterization of *Encephalitozoon cuniculi* from a free-ranging rat (*Rattus norvegicus*). Vet. Parasitol. 107: 279-285.
- 14. Snowden, K.F., B.C. Lewis, J. Hoffman, and J. Mansell. 2009. *Encephalitozoon cuniculi* infections in dogs: a case series. J. Am. Anim. Hosp. Assoc. 45: 225-231.
- 15. Waller, T. 1979. Sensitivity of *Encephalitozoon cuniculi* to various temperatures, disinfectants and drugs. Lab. Anim. 13: 227-230.
- 16. Wasson, K., and R.L. Peper 2000. Mammalian microsporidiosis. Vet. Pathol. 37: 113-128.