HMA Base Repair

RPR Spring Meeting
February 23, 2017
Ken Walschlager
TS HOT MIX ASPHALT (HMA) BASE 25.0 MM FOR BASE REPAIRS

- Base repair will be required... Possibly consisting of removal and replacement of existing HMA and/or concrete pavement... at locations chosen by the ENGINEER.
Not this obvious…
Issues

Identifying Base repair

– Rutting
– Slipping
– Delamination
– Raveling
Rutting

AMERICA RIDES ON US

Asphalt.
Rutting

- Caused by poor aggregate structure
- Excessively low airvoids
- Excessively high AC content
- Poor/weak subgrade
- Traffic overloading (weight or volume)
- Treatment – Remove and Replace
Slippage

- Lack of Bonding
 - Shearing force
- Pavement too thin?
- Excessive Deflection
 - Deep fatigue cracking
 - Complete pavement removal
- Treatment – Remove and Replace
Raveling/Delamination
Raveling/Delamination

• Age?
 – Newer
 • Lack of A/C?
 • Poor compaction?
 – Older
 • Oxidation?
 • Too much shade?

• Treatment - Remove and Replace
Issues

Identifying Base repair

– Fatigue Cracking
– Block Cracking
– Longitudinal Cracking
– Transverse Cracking
– Reflective Cracking
– Edge Cracking
Alligator Cracking
Fatigue cracking

Block cracking
Low severity fatigue

High severity fatigue
Fatigue/Block Cracking

- Fatigue Cracking
 - Load related, design or traffic pattern change?
 - High deflection, weak or wet subbase?
 - Treatment - Remove and Replace
- Block Cracking
 - Age related, hardening of asphalt
 - Freeze/thaw shrinkage
 - Treatment - Crack sealant/filling
Longitudinal Cracking - wheel path

Poor Joint Density
Longitudinal/Transverse

• Longitudinal
 – Thermal Stress or traffic loads
 – Lower joint density/higher air voids
 – Can lead to raveling

• Transverse
 – Thermal related
 – Can be full depth

• Treatment – crack sealant, crack filler
Reflective/Edge Cracking

• Reflective
 – Caused by underlying cracks
 – Treatment – Crack seal or base repair.

• Edge Cracking
 – Lack of supportive shoulder
 – Overloading area
 – Treatment – Full depth widening
Base Repair?
Base Repair?
Base Repair?
Base Repair?
Where do you stop?
Mill first? Patch first?

Mill first
- Pros: Better see underlying area, Identify surface cracking or base failure
- Cons: Traveling public on milled surface, exposed manholes etc.

Patch first
- Some base failure may not be visible
- Some newly placed base material will be removed by milling operation
Right Equipment
Tack .05 gal/syd
.05 gal/syd crossview
Density

• Better Compaction results in…
 – Extended pavement’s life of service
 – Greater strength to support heavier loads
 – Increased resistance to rutting
 – Reduced permeability of water and air
 – Overall durability
 Proper Depth for Design

<table>
<thead>
<tr>
<th>Nominal Mix Design</th>
<th>9.5mm</th>
<th>12.5mm</th>
<th>19mm</th>
<th>25mm</th>
<th>4.75mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Partical Size</td>
<td>12.5mm</td>
<td>19mm</td>
<td>25mm</td>
<td>37.5mm</td>
<td>9.5/12.5mm</td>
</tr>
<tr>
<td>Minimum Depth</td>
<td>1"</td>
<td>1.5"</td>
<td>2"</td>
<td>3"</td>
<td>.55"</td>
</tr>
<tr>
<td>Maximum Depth</td>
<td>2"</td>
<td>3"</td>
<td>4"</td>
<td>6"</td>
<td>1 1/8"</td>
</tr>
<tr>
<td>Recommended Depth</td>
<td>1.5"</td>
<td>2"</td>
<td>3"</td>
<td>4.5"</td>
<td>1"</td>
</tr>
<tr>
<td>Wedge/Level Max</td>
<td>3"</td>
<td>4.5"</td>
<td>6"</td>
<td>9"</td>
<td>???</td>
</tr>
</tbody>
</table>
Proper Production

- Stockpiles built correctly and tested?
- Loader using correct methods?
- Plant calibrated?
- Right blend entered?
- Proper loading of haul trucks?
- Trucks equipped with tarps?
Proper Laydown

- Surface properly prepared/tacked?
- Mix dumped properly into buggy/paver?
- Hopper not run empty?
- Flow gates/auger speed set correctly?
- Proper head of material?
- Auger height correct/constant motion?
- Paver operated at constant speed?
- Depth as uniform as possible?
Proper Depth – it’s important

- Deep enough for aggregate structure

<table>
<thead>
<tr>
<th>Nominal Mix Design</th>
<th>9.5mm</th>
<th>12.5mm</th>
<th>19mm</th>
<th>25mm</th>
<th>4.75mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Mix Design</td>
<td>9.5mm</td>
<td>12.5mm</td>
<td>19mm</td>
<td>25mm</td>
<td>4.75mm</td>
</tr>
<tr>
<td>Max Partical Size</td>
<td>12.5mm</td>
<td>19mm</td>
<td>25mm</td>
<td>37.5mm</td>
<td>9.5/12.5mm</td>
</tr>
<tr>
<td>Minimum Depth</td>
<td>1"</td>
<td>1.5"</td>
<td>2"</td>
<td>3"</td>
<td>.55"</td>
</tr>
<tr>
<td>Maximum Depth</td>
<td>2"</td>
<td>3"</td>
<td>4"</td>
<td>6"</td>
<td>1 1/8"</td>
</tr>
<tr>
<td>Recommended Depth</td>
<td>1.5"</td>
<td>2"</td>
<td>3"</td>
<td>4.5"</td>
<td>1"</td>
</tr>
<tr>
<td>Wedge/Level Max</td>
<td>3"</td>
<td>4.5"</td>
<td>6"</td>
<td>9"</td>
<td>????</td>
</tr>
<tr>
<td>Recommended Depth</td>
<td>1.5"</td>
<td>2"</td>
<td>3"</td>
<td>4.5"</td>
<td>1"</td>
</tr>
<tr>
<td>Wedge/Level Max</td>
<td>3"</td>
<td>4.5"</td>
<td>6"</td>
<td>9"</td>
<td>????</td>
</tr>
</tbody>
</table>
Rollers

- Static
 - Double drum
 - 3 Wheeled
 - Pneumatic Tire
- Vibratory
- Oscillatory
- Combination Rollers
Paver/Roller Speed

- Do not out run your rollers.
 - 3.5 mph roller
 300ft/min – 3 wide to cover X 4 passes
 \[\frac{300}{12} = 25 \text{ ft/min} \]
 85% rolling = 21 ft/min paver speed
 (140tph)
 - 300ft/min – 2 wide to cover X 4 passes
 \[\frac{300}{8} = 37.5 \]
 85% rolling = 32 ft/min paver speed
 (211tph)
Rolling

- Turn towards the shoulder (away from traffic) stopping at an angle.
- Make sure vibration is turned off before stopping.
- Be sure not to turn wheel while stopped.
- Break down when asphalt is at its hottest.
- Cover entire mat with one pass before starting 2nd.
Rolling...

- Take previous stop marks out with next pass.
- As paver moved forward, roll up to paver with each pass to seal in heat.
- Roll handwork as soon as possible.
- Proper longitudinal joint construction.
 - Stay on hot mat
 - Know when to “pinch the joint”
- Cross-roll transverse joints.
Summary

• Good design
• Proper production
• Proper paving practices
• Good rolling techniques
• Stay watchful – things change…
Questions?

www.asphaltIndiana.org