Auditory Brainstem Implantation for Children with Cochlear Nerve Deficiency

Craig Buchman, MD
Matthew G. Ewend, MD
Holly F.B. Teagle, AuD
Lilian Henderson, SLP
Shuman He, PhD
John Grose, PhD
Acknowledgements

• Advisory Board Member: ABC and Cochlear

• Funding provided, in part, by:
 » Mr. and Mrs. Van Witherspoon
 » Amy Edge
 » UNC Hospitals
 » NIH/NIDCD
 » Cochlear Corporation
Cochlear Nerve “Aplasia”

MRI Evidence of Cochlear Nerve Deficiency

Cochlear Implant or Not?
Speech Perception (SRI-Q) by Malformation

Buchman et al. *Laryngoscope* 2011
Auditory Brainstem Implant (ABI)

Possible Indications

• Absent Cochlea or Cochlear Nerves
 » NF2
 » Congenital absence (Colletti et al 2002, ……)
 » Total ossification
 » Traumatic transection

• Unable to or failed benefit from CI
 » Severe malformations, progressive ossification, other?

• Committed Parents or Patients
• Cognitively normal or near normal
Auditory Brainstem Implant
ABI Device

- Developed by William House
- Similar to Cochlear Implant
- Foramen of Luschka
- Removable Magnet
FDA Approved Protocol

- Investigator Initiated Investigational Device Exemption (IDEs)
- IRB Approval
- Safety and Feasibility Study (N=10 children)
- Inclusion Criteria
 - Indications:
 - Cochlear Nerve Deficiency+/-severe inner ear malformation
 - Post-meningitis ossification (PMO)
 - Previous CI (if possible) → No benefit
 - Cognitively Normal
 - Good Parents
 - Reasonable expectations
- Outcomes
 - Surgical Complications
 - Sound detection, Speech perception, Speech Production, Language
Protocol

• Retrosigmoid Craniotomy
 » Nucleus 24 ABI (Cochlear Corp)
 » Monitor CN 7, 9, 10, 11
 » Implant evoked ABR
• Postop CT
• Pediatric ICU
• OR Stim prior to activate
• Activation under monitoring
• Speech perception hierarchy similar to cochlear implantation
 » IT-MAIS, ESP, PBK
Postoperative CT Scans
Demographics

<table>
<thead>
<tr>
<th></th>
<th>UNC1</th>
<th>UNC2</th>
<th>UNC3</th>
<th>UNC4</th>
<th>UNC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous CI</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Age at ABI</td>
<td>3.33</td>
<td>2.50</td>
<td>3.50</td>
<td>5.50</td>
<td>2.17</td>
</tr>
<tr>
<td>Gender</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Side</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Etiology</td>
<td>CND</td>
<td>CND-CC</td>
<td>CND</td>
<td>CND</td>
<td>CND</td>
</tr>
<tr>
<td>Syndrome</td>
<td>CHARGE</td>
<td>NA</td>
<td>CHARGE</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

1/15/15
Results

<table>
<thead>
<tr>
<th></th>
<th>UNC1</th>
<th>UNC2</th>
<th>UNC3</th>
<th>UNC4</th>
<th>UNC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>eABR +</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-Auditory OR</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Active Electrodes</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Non-Auditory PO</td>
<td>Cough</td>
<td>Swallow</td>
<td>No</td>
<td>Vestibular</td>
<td>Vestibular</td>
</tr>
<tr>
<td>Complications</td>
<td>CSF Leak</td>
<td>Aseptic Meningitis</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sequelae</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Performance

<table>
<thead>
<tr>
<th></th>
<th>UNC1</th>
<th>UNC2</th>
<th>UNC3</th>
<th>UNC4</th>
<th>UNC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Implant (yr)</td>
<td>3.33</td>
<td>2.50</td>
<td>3.50</td>
<td>5.50</td>
<td>2.17</td>
</tr>
<tr>
<td>Duration of Use (yr)</td>
<td>1.62</td>
<td>1.34</td>
<td>0.97</td>
<td>0.61</td>
<td>0.35</td>
</tr>
<tr>
<td>PTA</td>
<td>30</td>
<td>45</td>
<td>35</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>SDT</td>
<td>15</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>IT-MAIS</td>
<td>43%</td>
<td>3%</td>
<td>30%</td>
<td>50%</td>
<td>3%</td>
</tr>
<tr>
<td>ESP-W</td>
<td>58%</td>
<td>NA</td>
<td>NA</td>
<td>50</td>
<td>NA</td>
</tr>
</tbody>
</table>
Conclusions

• ABI in Young Children is in very early stages in US

• Safe so far
 » CSF Leaks
 » Aseptic meningitis

• Early results
 » Sound detection in all
 • 1 with poor detection → good location, no cochleas
 » Limited speech perception thus far (very early)

• Objective Measures