Bilateral Cochlear Implantation for Patients with Enlarged Vestibular Aqueducts:

Evaluating Factors that Influence Outcomes

Jennifer Harris, AuD, Susan M. Gibbons, AuD, Elizabeth Erickson O’Neill, AuD, Margaret Kenna, MD, MPH, Greg Licameli, MD, MHCM
Disclosures

(None)
Observation: Many non-users of the second-implanted ear had a diagnosis of EVA.

What we wanted to know:

• Is this different than patients with other diagnoses?
 – If so, what makes kids with EVA more prone to non-use?

• What can we change about our current practices to maximize outcomes for BOTH EARS for patients with EVA?
Bilaterally-implanted children with EVA: What can we learn from the literature?

• Most EVA studies include only unilaterally-implanted children (Ko et al., 2013; Chen et al., 2011).

• Studies that do include bilaterally-implanted children:
 – Measure success by soundfield PTA (Lee et al., 2014: n=4)
 – Comment that they could not investigate aspects related to bilateral implantation due to a small sample size (Pritchett et al., 2015: n=9)
 – Could not compare ears within subjects (Manzoor et al., 2016, n=18)
Subjects

20 patients with a diagnosis of EVA who were bilaterally implanted:

- 15 sequential, 5 simultaneous
- 15 females, 5 males
- Age at first implantation: 12 months to 19 years (mean=7.4 years)
- All subjects are spoken-English communicators, though some also sign
- Patients with isolated EVA as well as EVA with other bony structure abnormalities are included
- All 3 CI manufacturers represented
Percentage of patients who are NON-USERs of their second-implanted ear

<table>
<thead>
<tr>
<th></th>
<th>Sequential</th>
<th>Simultaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-EVA</td>
<td>5% (12/248)</td>
<td>0% (0/31)</td>
</tr>
<tr>
<td>EVA</td>
<td>40%** (6/15)</td>
<td>0% (0/5)</td>
</tr>
</tbody>
</table>

** Indicates statistically significant difference (p < 0.001)
Reasons for non-use of second CI

2 patients with EVA and 4 patients with other diagnoses are “trying again”.

EVA (n=6)
Non-EVA (n=12)
Comparisons of factors for sequentially implanted patients

<table>
<thead>
<tr>
<th>Factor (months)</th>
<th>Users (n=9)</th>
<th>Non-users (n=6)</th>
<th>Difference (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of deafness prior to 1st CI</td>
<td>14 (±17)</td>
<td>16 (±10)</td>
<td>2</td>
</tr>
<tr>
<td>Duration of deafness prior to 2nd CI</td>
<td>59 (±42)</td>
<td>91 (±46)</td>
<td>32</td>
</tr>
<tr>
<td>Duration between 1st and 2nd CI</td>
<td>35 (±21)</td>
<td>78 (±42)</td>
<td>43*</td>
</tr>
</tbody>
</table>

* Indicates statistically significant difference (p = 0.05)
<table>
<thead>
<tr>
<th>Factors</th>
<th>Users (n=9)</th>
<th>Non-users (n=6)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing aid use in 1st implanted ear</td>
<td>100% (9/9)</td>
<td>100% (6/6)</td>
<td>0% points</td>
</tr>
<tr>
<td>Hearing aid use in 2nd implanted ear</td>
<td>100% (9/9)</td>
<td>17% (1/6)</td>
<td>83% points*</td>
</tr>
<tr>
<td>Presence of abnormal bony structures</td>
<td>78% (7/9)</td>
<td>50% (3/6)</td>
<td>28% points</td>
</tr>
</tbody>
</table>

* Indicates statistically significant difference (p < 0.5)
Degree and configuration of hearing loss

Users

<table>
<thead>
<tr>
<th>Degree</th>
<th>Low Frequencies</th>
<th>High Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Mod/Sev</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Profound</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Non-Users

<table>
<thead>
<tr>
<th>Degree</th>
<th>Low Frequencies</th>
<th>High Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Mod/Sev</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Profound</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Biggest differences between users and non-users:

* Time gap between first and second implant, and

* Hearing aid use (degree of hearing loss?) in the second-implanted ear
We propose...

• EARLY preparation of the possibility of implantation for families of children with EVA
 – Families are well-informed, prepared, and candidacy assessments completed in the case of sudden losses

• Hearing aid use in the non-implanted ear

• Implanting ears with EVA earlier than we might for others
 – Known progressive nature
 – Closely monitor speech recognition

• Simultaneous implantation (when appropriate)
Future directions

• Are there other important factors that were not considered within this study? (i.e. surgical)
• Can we use the BiCHIP (predictive tool) to help us predict these outcomes, or help counsel/advise these families?
• Speech recognition tracking for individual ears as well as binaural (to evaluate each ear’s individual contribution as well as binaural benefit).
• For children with EVA and an asymmetric loss, how ‘bad’ does each ear have to be to receive a cochlear implant?
References

Boston Children’s Hospital
Cochlear Implant Team

Physicians
• Greg Licameli, MD, MHCM, Director
• Jacob Brodsky, MD
• Margaret Kenna, MD, MPH
• Dennis Poe, MD

Audiologists
• Susan Gibbons, AuD
• Jennifer Harris, AuD
• Ashleigh Lewkowitz, AuD
• Marilyn Neault, PhD
• Elizabeth Erickson O’Neill, AuD
• Rebekah Tozer, AuD

Director of Audiology Research
• Amanda Griffin, PhD

Speech-Language Pathologists
• Jennifer Johnston, EdD
• Denise Fournier Eng, MA

Psychologists
• Terrell Clark, PhD
• Peter Isquith, PhD
• Amy Szarkowski, PhD

Outreach & Support Services
• Katie Prins, MBA

Educational Audiologist
• Lauralyn Chetwynd, AuD
• Christine MacDonald, AuD

Program Coordinator
• Sarah Thomas, MHA

Audiology Assistant
• Jill Rosoff, BA
ACKNOWLEDGEMENTS

We are grateful to the families and children who receive services through the Cochlear Implant Program at Boston Children’s Hospital. Their support and confidence allow us to better understand the needs of this population for now and for the future.