Position of Auditory Brainstem Implant Electrode Influences Audiometric Outcomes and Side Effects

Samuel R. Barber M.S., Elliott D. Kozin, M.D., Mary E. Cunnane, M.D., Sidharth V. Puram, M.D., PhD., Parth Shah, B.A., Max Smith, M.D., Aaron K. Remensnyder, M.D., M.P.H., Barbara S. Herrmann, Ph.D., M. Christian Brown, Ph.D., Daniel J. Lee, M.D.

14th International Conference on Cochlear Implants – CI 2016
Toronto, Canada
No disclosures or conflicts of interest
Background
Auditory Brainstem Implant placement

- ABI’s are placed directly over the brainstem in proximity to the dorsal cochlear nucleus (DCN)

- Placement is “blind” and electrophysiology is utilized to confirm placement

- Audiometric outcomes vary widely among similar cohorts

- Electrodes are commonly inactivated due to side effects
Rationale
Artifact obscures electrode position in post-op CT

Nucleus Profile ABI 541 with flexible array (Cochlear) (NOT FDA APPROVED)

Standard Axial View: windmill streak artifact present

MPR View: Electrode positioning is impossible to determine
We hypothesize that:

1) Post-operative Computed Tomography (CT) can resolve electrode array position in 3D space.

2) CT determined ABI array positions correlate with audiometric data and side effects.
Methods

3D Reconstruction of Post-operative CT

- 4 Pediatric (non-NF2) and 7 Adult ABI subjects (6 NF2, 1 non-NF2) from our institution
 - *(IRB approved protocols #340312, #441528, #444277).*

- True axial series were reformatted in Multiplanar Reconstruction (MPR) using the McRae line. DICOM files were imported into Osirix MD v.7.0.1 64-bit. Basion and electrode tip coordinates were marked in MPR

- CT series were then viewed in 3D Maximum Intensity Projection (MIP)
Methods
3D Maximum Intensity Projection

360° view of post-operative axial CT scan
• 3D maximum intensity projection (MIP) revealed electrode array position

• Linear and angular measurements between marked coordinates were made using standard posterior and lateral views

Methods
3D Reconstruction of Post-operative CT
Methods
A new classification system for electrode positions

TYPES I-IV
Based on Angle V from a lateral view

TYPE I
71-90°

TYPE II
20-70°

TYPE III
0-19°

TYPE IV
outside 0-90° or laterally tilted

TYPES A, B, C, D
Based on Angle T from a posterior view

TYPE A
71-90°

TYPE B
20-70°

TYPE C
0-19°

TYPE D
less than 0°
Post-activation data included:

- The number and distribution of active electrodes and side effects
- Psychophysical threshold (T) levels during perceptual testing
Results
A wide variety of angles were observed

- All arrays were normalized to the right side for comparison.
- The majority of electrodes have a range of angles between 0-90 degrees with respect to the horizontal.
Results
Subject Responses: T Values, disabled electrodes (X)

4 Pediatric Subjects
(2 revisions)

6 Adult Subjects
(All displayed as if R side)
3 Results
Some orientations may be more optimal than others

Combined Classification Types in Subjects with Audiometric Data

<table>
<thead>
<tr>
<th>Combined Classification</th>
<th>Mean number of active electrodes (n)</th>
<th>Mean number of side effects (n)</th>
<th>Mean T’s during ABI programming (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type IA (1, 1)</td>
<td>12 (2)</td>
<td>2.5 (2)</td>
<td>98.4 CL (2)</td>
</tr>
<tr>
<td>Type IB (0, 1)</td>
<td>14 (1)</td>
<td>3 (1)</td>
<td>135.29 CL (1)</td>
</tr>
<tr>
<td>Type IIA (0, 3)</td>
<td>14 (3)</td>
<td>0 (3)</td>
<td>99.62 CL (2)</td>
</tr>
<tr>
<td>Type IIB* (1, 1)</td>
<td>11.5 (2)</td>
<td>6 (1)</td>
<td>142.36 CL (1)</td>
</tr>
<tr>
<td>Type IIIA (1, 0)</td>
<td>8 (1)</td>
<td>5 (1)</td>
<td>92 CL (1)</td>
</tr>
<tr>
<td>Type IV (1, 0)</td>
<td>12 (1)</td>
<td>7 (1)</td>
<td>125.5 CL (1)</td>
</tr>
<tr>
<td>Type D (2, 0)</td>
<td>12 (2)</td>
<td>10.5 (2)</td>
<td>165.79 CL (2)</td>
</tr>
</tbody>
</table>

T = Threshold value for ABI programming map
* 2 additional adult subjects with IIB did not have audiometric data

TYPES A, B, C, D
Based on Angle T from a posterior view
Discussion / Conclusion
The potential for more optimum placement

- This study is the first to analyze post-operative ABI array orientation and correlate with audiometric data.
- A classification system was devised that characterizes electrode array position in the skull.
- ABI placement varies widely among patients and may explain the range of outcomes seen among similar cohorts.
- The use of imaging may potentially optimize array placement, improve auditory outcomes, and reduce side effects.
Discussion / Conclusion

ABI electrode array position can be resolved

- Limitations of our study include:
 - Inability to resolve neural structures with CT
 - Reliance on behavioral responses from young children and NF2 with comorbidities
 - Small sample size
 - Prospective studies on larger numbers of patients will determine the predictive value of ABI location on hearing outcomes and side effects.
Clinical ABI team and Acknowledgements

- Daniel J. Lee, MD
- Fred Barker, II, MD
- Barbara Herrmann, PhD
- Christine Carter, Sc.D
- M. Christian Brown, PhD
- Aaron K. Remenschneider, MD, MPH
- Sidharth V. Puram, MD, PhD
- Elliott D. Kozin, MD
- Mary E. Cunnane, MD
- Parth Shah, BA
3 Results
A wide variety of linear distances were observed

- Linear distances were difficult to normalize due to variable anatomy between subjects.
- A few adult and pediatric subjects had values beyond twice the standard error of the mean (dotted line).
- This subgroup was analyzed to identify potential differences in electrode distribution.

Position of Proximal ABI Electrode Array Tip For Pediatric and Adult Subjects