The emergence of speech intelligibility in long-term pediatric cochlear implant users

University of Texas at Dallas
Kathryn Wiseman
Andrea Warner-Czyz
Olga Peskova
Ann Geers

Johns Hopkins University
Christine Mitchell
Nae-Yuh Wang

University of Southern California
Laurie Eisenberg

Childhood Development after Cochlear Implantation (CDaCI)
Disclosure

• Kathryn Wiseman, Andrea Warner-Czyz, Olga Peskova, and Ann Geers
 – No conflicts of interest to report

• Christine Mitchell, Nae-Yuh Wang, and Laurie Eisenberg
 – Research support from Advanced Bionics

Funding: NIH R01DC004797-15 (L. Eisenberg, PI)
Speech intelligibility

How understandable a person’s speech is to a listener
Speech intelligibility

Speech production ≠ Speech intelligibility
Importance of speech intelligibility

• Poor intelligibility related to:

 Isolation

 Poor social interactions

 Mental health issues

Most et al, 1999, 2011; Freeman et al., 2017
Previous research findings

• Less accurate, more variable in cochlear implant (CI) users vs. typical hearing (TH) peers

• Intelligibility improves over time

Better speech intelligibility:

- ↓ Age at CI
- ↓ Family size
- ↑ Family income
- ↑ Speech perception
- ↑ Other speech/language outcomes
- Females
- Oral communication

Allen et al., 1998; Beadle et al., 2005; Tobey et al., 2003, 2011; Osberger et al., 1993; Montag et al., 2014; Freeman et al., 2017
Research questions

• Does speech intelligibility change as a function of duration of auditory experience (i.e., 4-8 years)?

• Which demographic variables predict speech intelligibility scores at
 – 4-5 years post-CI?
 – 6-8 years post-CI?
Childhood Development after Cochlear Implantation Study (CDaCI)

External Advisors
Karen Iler Kirk
Mabel L. Rice

Eisenberg
Johnson
Fisher

Zwolan
Arnedt

Della Santina
Marsiglia

DCC
Wang Mitchell
Vilche

Oullette
Mellon

Teagle
Woodard

Geers
Warner-Czyz
Britt

PCC
Quittner
Cejas

Cejas Martinez

Childhood Development after Cochlear Implantation
Participant characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>CI participants ($n = 128$)</th>
<th>TH participants ($n = 81$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditory experience</td>
<td>4 – 8 yrs</td>
<td>6.5 – 10.4 yrs</td>
</tr>
<tr>
<td>Percent Female</td>
<td>57%</td>
<td>56%</td>
</tr>
<tr>
<td>Percent congenital onset</td>
<td>55%</td>
<td>-</td>
</tr>
<tr>
<td>Mean amplification age (yrs)</td>
<td>1.1 (0.8)</td>
<td>-</td>
</tr>
<tr>
<td>Mean CI activation age (yrs)</td>
<td>2.5 (1.2)</td>
<td>-</td>
</tr>
</tbody>
</table>
McGarr Sentence Intelligibility Test

- 36 English sentences
- 3, 5, and 7 syllables
- **Keywords with** high and low context
Speech intelligibility increases with longer duration of auditory experience.

Speech intelligibility increases with longer duration of auditory experience.
Early and late speech intelligibility

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Early (4-5 yrs post-CI)</th>
<th>Late (6-8 yrs post-CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean chronologic age (yrs)</td>
<td>7.1 (1.0)</td>
<td>10.1 (1.4)</td>
</tr>
<tr>
<td>Mean CI experience (yrs)</td>
<td>4.6 (0.5)</td>
<td>7.5 (0.7)</td>
</tr>
</tbody>
</table>
56% of CI users attain scores within 1 SD of the TH mean by 8 years post-CI.
Mean speech intelligibility improves as a function of CI experience.
Analysis

• Demographic predictors
 – Chronologic age
 – Age at CI
 – Duration of CI experience
 – Speech perception at 3 years post-CI (SRI-Q)
<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>Open-set Hearing in Noise Test for Children (quiet)</td>
</tr>
<tr>
<td>500</td>
<td>Open-set Phonetically Balanced Kindergarten words</td>
</tr>
<tr>
<td>400</td>
<td>Open-set Lexical Neighborhood Test</td>
</tr>
<tr>
<td>300</td>
<td>Closed-set Pediatric Speech Intelligibility Test</td>
</tr>
<tr>
<td>200</td>
<td>Closed-set Early Speech Perception Test</td>
</tr>
<tr>
<td>100</td>
<td>Parent report Meaningful Auditory Integration Scale</td>
</tr>
</tbody>
</table>
Predictors of EARLY speech intelligibility (4-5 years post-CI)

<table>
<thead>
<tr>
<th></th>
<th>Regression model 1</th>
<th>Regression model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronologic age</td>
<td>$\beta = -.164$</td>
<td>$\beta = -.252^{***}$</td>
</tr>
<tr>
<td>SRI-Q at 3 years post-CI</td>
<td>--</td>
<td>$\beta = .704^{***}$</td>
</tr>
<tr>
<td>R^2</td>
<td>.027</td>
<td>.514</td>
</tr>
<tr>
<td>ΔR^2</td>
<td>.027</td>
<td>.487***</td>
</tr>
</tbody>
</table>

***$p < .001$
Predictors of LATE speech intelligibility (6-8 years post-CI)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Regression model 1</th>
<th>Regression model 2</th>
<th>Regression model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI experience</td>
<td>$\beta = .284^{***}$</td>
<td>$\beta = .277^{***}$</td>
<td>$\beta = .170^*$</td>
</tr>
<tr>
<td>Age at CI</td>
<td>--</td>
<td>$\beta = -.191^*$</td>
<td>$\beta = -.330^{***}$</td>
</tr>
<tr>
<td>SRI-Q at 3 years post-CI</td>
<td>--</td>
<td>--</td>
<td>$\beta = .612^{***}$</td>
</tr>
<tr>
<td>R^2</td>
<td>.081</td>
<td>.117</td>
<td>.462</td>
</tr>
<tr>
<td>ΔR^2</td>
<td>.081*</td>
<td>.036*</td>
<td>.345***</td>
</tr>
</tbody>
</table>

*p < .05, **p < .01, ***p < .001
Conclusions

• Speech intelligibility improves through 8 years after CI

• Speech perception at 3 years post-CI predicts speech intelligibility