Effects Single-Sided Congenital Deafness on the Brain

Andrej Kral

Institute of AudioNeuroTechnology (VIANNA) & Dept. of Experimental Otology, ENT Clinics Cluster of Excellence Hearing4All, Germany & School of Medicine & Health Sciences Macquarie University, Sydney, Australia
Unilateral (sequential) CI children: better and poorer ear

In postlingual deafness, interimplant delay not crucial outcome factor

Lazard et al., 2012; Tavora-Vieira et al., 2013
Unilateral (sequential) CI children: better and poorer ear

In postlingual deafness, interimplant delay not crucial outcome factor

Lazard et al., 2012; Tavora-Vieira et al., 2013
Unilateral (sequential) CI children: better and poorer ear

In postlingual deafness, interimplant delay not crucial outcome factor

Lazard et al., 2012; Tavora-Vieira et al., 2013

Implantation age on 1st ear: 1-2 years
Interimplant delay > 5 years

Peters et al., 2007, Otol Neurootol
Graham et al., 2009, Cochlear Impl Int
Gordon et al., 2011, Cochl Impl Int
Tavora-Vieira & Rajan, 2015, Audiol Neurootol
Arndt et al., 2015, Audiol Neurootol
Illg et al., 2013, Otol Neurootol
Illg et al., 2019, Hear Res

Review in Gordon & Kral, 2019, Hear Res
Unilateral (sequential) CI children: better and poorer ear

In postlingual deafness, interimplant delay not crucial outcome factor

Peters et al., 2007, Otol Neurotoll
Graham et al., 2009, Cochlear Impl Int
Gordon et al., 2011, Cochl Impl Int
Tavora-Vieira & Rajan, 2015, Audiol Neurootol
Arndt et al., 2015, Audiol Neurootol

Lazard et al., 2012; Tavora-Vieira et al., 2013

Implantation age on 1st ear: 1-2 year
Interimplant delay > 5 years

Monosyllabic test [%]

Mean performance first ear
Duration of binaural experience [years]
Unilateral (sequential) CI children: better and poorer ear

In postlingual deafness, interimplant delay not crucial outcome factor

Lazard et al., 2012; Tavora-Vieira et al., 2013

Implantation age on 1st ear: 1-2 year
Interimplant delay > 5 years

Peters et al., 2007, Otol Neurootol
Graham et al., 2009, Cochlear Impl Int
Gordon et al., 2011, Cochl Impl Int
Tavora-Vieira & Rajan, 2015, Audiol Neurootol
Arndt et al., 2015, Audiol Neurootol

Review in Gordon & Kral, 2019, Hear Res

Illg et al., 2013, Otol Neurootol
Illg et al., 2019, Hear Res

Extensive and durable effect!
Single-sided and binaural deafness

Controls:
Congenitally deaf cats (7)
Normal hearing cats (7)

Single-sided animals:
Congenitally single-sided deaf cats (4)
CI cats (8)
What is the consequence of single-sided deafness on the central representation of both ears and binaural hearing?

Controls:
Congenitally deaf cats (7)
Normal hearing cats (7)

Single-sided animals:
Congenitally single-sided deaf cats (4)
CI cats (8)
What is the consequence of single-sided deafness on the central representation of both ears and binaural hearing?

Functional test with binaural cochlear implants: irrespective of hearing status of the cochlea

Controls:
- Congenitally deaf cats (7)
- Normal hearing cats (7)

Single-sided animals:
- Congenitally single-sided deaf cats (4)
- CI cats (8)
Stronger & weaker ear in SSD

A) Hearing cat
Response to ipsilateral ear

B) Congenital single-sided deaf cat
Response to ipsilateral (hearing) ear

C) Hearing & binaurally deaf

D) Congenital single-sided deaf

Kral et al., 2013, Brain
Kral et al., 2013, Front Syst Neurosci
Stronger & weaker ear in SSD

A) Hearing cat
Response to ipsilateral ear
Response to contralateral ear

B) Congenital single-sided deaf cat
Response to ipsilateral (hearing) ear
Response to contralateral (deaf) ear

C) Hearing & binaurally deaf

D) Congenital single-sided deaf

Stronger and a weaker ear representation

Kral et al., 2013, Brain
Kral et al., 2013, Front Syst Neurosci
Stronger & weaker ear in SSD

A) Hearing cat
Response to ipsilateral ear
Response to contralateral ear

C) Hearing & binaurally deaf

Stronger and a weaker ear representation

B) Congenital single-sided deaf cat
Response to ipsilateral (hearing) ear
Response to contralateral (deaf) ear

D) Congenital single-sided deaf

There is a sensitive period of ~ 4 months for the effect

Kral et al., 2013, Brain
Kral et al., 2013, Front Syst Neurosci
Comparison of ITD and ILD, single sites

HEARING CONTROL

![Graph showing interaural time difference](image-url)

Tillein et al., 2010, Cereb Cortex
Comparison of ITD and ILD, single sites

HEARING CONTROL

Interaural Time Difference

Uncrossed earlier

Crossed earlier

Interaural Level Difference

Uncrossed stronger

Crossed stronger

H31907_Mch4_14_R_Ctx

Peristimulus time [ms]
Comparison of ITD and ILD, single sites

HEARING CONTROL

Interaural Time Difference

Uncrossed earlier

500

0

Crossed earlier

500

Interaural Level Difference

Uncrossed stronger

10

Crossed stronger

10

CONGENITALLY DEAF

Interaural Time Difference

Uncrossed earlier

500

0

Crossed earlier

500

Interaural Level Difference

Uncrossed stronger

10

Crossed stronger

10

Peristimulus time [ms]
ITD and ILD are differently affected

SSD: Ipsilateral (left) cortex

SSD: Contralateral (right) cortex

Tillein et al., 2016, Cereb Cortex
ITD and ILD are differently affected

SSD: Ipsilateral (left) cortex

SSD: Contralateral (right) cortex

Tillein et al., 2016, Cereb Cortex
ITD and ILD are differently affected

SSD: Ipsilateral (left) cortex

Interaural time difference

Uncrossed earlier

Crossed earlier

[μs]

500

0

Crossed stronger

SSD: Contralateral (right) cortex

Interaural level difference

Uncrossed stronger

Crossed stronger

[μs]

500

-25 0 25 50 [ms]

Tillein et al., 2016, Cereb Cortex
ITD and ILD are differently affected

SSD: Ipsilateral (left) cortex

SSD: Contralateral (right) cortex

Tillein et al., 2016, Cereb Cortex
Aural preference syndrome

Follows periods of developmental single-sided hearing within an early sensitive period

Gordon et al., 2015, Pediatrics
Gordon & Kral, 2019, Hear Res
Aural preference syndrome

Follows periods of developmental single-sided hearing within an early sensitive period

With both auditory nerves preserved

Gordon et al., 2015, Pediatrics
Gordon & Kral, 2019, Hear Res
Aural preference syndrome

Follows periods of developmental single-sided hearing within an early sensitive period

With both auditory nerves preserved

Prominently weaker auditory performance & slow learning on the second ear

Gordon et al., 2015, Pediatrics
Gordon & Kral, 2019, Hear Res
Aural preference syndrome

Follows periods of developmental single-sided hearing within an early sensitive period

With both auditory nerves preserved

Prominently weaker auditory performance & slow learning on the second ear

Reduced binaural localization (& binaural fusion)

Gordon et al., 2015, Pediatrics
Gordon & Kral, 2019, Hear Res
Aural preference syndrome

Follows periods of developmental single-sided hearing within an early sensitive period

With both auditory nerves preserved

Prominently weaker auditory performance & slow learning on the second ear

Reduced binaural localization (& binaural fusion)

Gordon et al., 2015, Pediatrics
Gordon & Kral, 2019, Hear Res
Authors

Jochen Tillein
Peter Hubka
Mika Sato
Peter Baumhoff
Rüdiger Land
Mathias Voigt
Gunnar Quass
Andrej Kral

Supported by Deutsche Forschungsgemeinschaft (Exc 1077) & MED®EL

www.neuroprostheses.com
Visual vs. auditory deprivation: weaker auditory effects

Mower et al., 1983, Science
Visual vs. auditory deprivation: weaker auditory effects

Mower et al., 1983, Science
Visual vs. auditory deprivation: weaker auditory effects

Mower et al., 1983, Science

Tillein et al., 2016, Cereb Cortex
Gordon & Kral, 2019, Hear Res
Visual vs. auditory deprivation: weaker auditory effects

Mower et al., 1983, Science

Tillein et al., 2016, Cereb Cortex
Gordon & Kral, 2019, Hear Res
Visual vs. auditory deprivation: weaker auditory effects

Mower et al., 1983, Science

Tillein et al., 2016, Cereb Cortex
Gordon & Kral, 2019, Hear Res
Visual vs. auditory deprivation: weaker auditory effects

Mower et al., 1983, Science

Tillein et al., 2016, Cereb Cortex

Gordon & Kral, 2019, Hear Res
Visual vs. auditory deprivation: weaker auditory effects

Mower et al., 1983, Science

Tillein et al., 2016, Cereb Cortex
Gordon & Kral, 2019, Hear Res

It is not like amblyopia - the weaker ear is not lost completely!