Angular Insertion Depth and Electrocochleography Predict Cochlear Implant Speech Outcomes

Michael W. Canfarotta, MD; Brendan P. O’Connell, MD; Christopher K. Giardina, PhD; Emily Buss, PhD; Kevin D. Brown, MD, PhD, Harold C. Pillsbury, MD; Craig A. Buchman, MD; Oliver F. Adunka, MD; Douglas C. Fitzpatrick, PhD
Disclosures

• None
Outline

• Variability in cochlear implant (CI) speech perception outcomes

• Relationship between outcomes and:
 1) Electrocochleography (ECochG)
 2) Angular insertion depth (AID) of the electrode array

• Implications for electrode array selection and use of ECochG in future work
Variability in Speech Perception

• Multifactorial issue
 • Duration of deafness (Holden et al. 2013)
 • “Cochlear health” with electrocochleography (Fontenot et al. 2018)
 • Duration of device use (Lenarz et al. 2012)
 • Electrode array placement
 • Scalar location (Finley et al. 2008)
 • AID (Buchman et al. 2014; O’Connell et al. 2016)

(Holden et al. 2013)
Variability in Speech Perception

• Multifactorial issue
 • Duration of deafness (Holden et al. 2013)
 • “Cochlear health” with electrocochleography (Fontenot et al. 2018)
 • Duration of device use (Lenarz et al. 2012)
 • Electrode array placement
 • Scalar location (Finley et al. 2008)
 • AID (Buchman et al. 2014; O’Connell et al. 2016)
ECochG

• The total response (ECochG-TR)
 • Single measurement obtained at the round window prior to implantation
 • Measures the sum of amplitudes of significant responses at the first three harmonics in response to tones of different stimulus frequencies
ECochG and Outcomes

• Can account for up to 40-50% of variance in CNC word scores in adults

(Fontenot et al. 2018)
AID

- Angular vs. linear depth

(Vanderbilt Institute for Surgery and Engineering)
AID

• Angular vs. linear depth

28 mm

(Vanderbilt Institute for Surgery and Engineering)
AID and Outcomes

• Relationship dependent on array design
• Better speech perception with:
 • Lateral wall – Deeper insertion maximizes cochlear coverage (Buchman et al. 2014; O’Connell et al. 2016)
 • Perimodiolar – Shallower basal insertion results in closer modiolar proximity (Holden et al. 2013; Chakravorti et al. 2019)
Objective

• Determine whether AID accounts for additional variance in speech perception outcomes not accounted for by cochlear physiology measured with ECochG-TR
Methods

• 50 adult CI recipients who underwent intraoperative ECochG
 • Lateral wall (n=41)
 • Perimodiolar (n=9)
• Retrospectively reviewed intraoperative x-ray with a rotating helical scala tympani model to determine AID
• Compared ECochG-TR and AID with CNC word scores at 6 months in the CI-alone condition
Methods

• Rotating helical scala tympani model
Variability in AID

Angular Insertion Depth (°)

Contour Advance
HiFocus Mid-Scala
Flex24
Flex28
Standard

Electrode Array
ECochG-TR and Speech Perception

![Graph showing the relationship between CNC (6 months, % correct) and TR (dB re 1 μV). The graph includes a linear regression line with the equation $n=50$ and $r^2=0.43$.](image-url)
AID Predicts Residual Variance

![AID Predicts Residual Variance](image)

Legend:
- Contour Advance
- HiFocus Mid-Scala
- Flex24
- Flex28
- Standard
AID Predicts Residual Variance

![Graph showing the relationship between predicted CNC word score and actual CNC word score. The graph includes data points for different conditions such as Contour Advance, HiFocus Mid-Scala, Flex24, Flex28, and Standard, with an r^2 value of 0.72.]
Conclusions

• Shallow perimodiolar and deep lateral wall array insertions optimize CI-alone speech perception outcomes

• ECochG can serve as a powerful tool to help control for the substantial variability observed in speech perception outcomes

• Future studies addressing additional surgical factors (e.g., modiolar proximity) with computed tomography
UNC Cochlear Implant Team

Physicians
- Kevin Brown, MD, PhD
- Matthew Dedmon, MD, PhD
- Lauren Kilpatrick, MD
- Brendan O’Connell, MD
- Harold Pillsbury, MD
- Carlton Zdanski, MD

Adult Audiologists
- English King, AuD
- Andrea Bucker, AuD
- Ellen Deres, AuD
- Sarah McCarthy, AuD
- Adrienne Pearson, AuD
- Kristen Quinones, AuD
- Allison Young, AuD

Research
- Emily Buss, PhD
- Margaret Dillon, AuD
- Douglas Fitzpatrick, PhD
- John Grose, PhD
- Lisa Park, AuD
- Meredith Rooth, AuD

Pediatric CI Audiologists
- Melissa Auchter, AuD
- Erika Gagnon, AuD
- Elizabeth Preston, AuD
- Jennifer Woodard, AuD

Pediatric Audiologists
- Danielle Doyle, AuD
- Shana Jacobs, AuD
- Sarah Martinho, AuD
- Marisa Marsteller, AuD
- Laurel Okulski, AuD
- Jill Ritch, AuD
- Patricia Roush, AuD
- Kaylee Watson, AuD
- Molly Widney, AuD

Speech-Language Pathologists
- Hannah Eskridge, MSP
- Maegan Evans, PhD
- Sandra Hancock, MS
- Lillian Henderson, MSP
- Christine Kramer, MS
- Erin Thompson, MS

NIH T-32 Research Fellow
- Michael Canfarotta, MD

Neurotology Fellows
- Nofrat Schwartz, MD
- Morgan Selleck, MD

Research Assistants
- Kaylene King, BA
- Margaret Richter, BA
- Madeleine Barclay, BA

Coordinators
- Joshua Light, BS
- LeSonia Mason
Thank you

16th International Conference on Cochlear Implants and Other Implantable Technologies
March 18-21, 2020
www.ci2020orlando.org
#CI2020International