Prediction of Children's Language Outcome Using Diffusion Tensor Imaging and Machine Learning

Nancy M Young, MD
Lillian S Wells Professor of Pediatric Otolaryngology
Northwestern University Feinberg School of Medicine
Fellow, Knowles Hearing Center of Northwestern
Nancy Melinda Young, MD

- Surgical Advisory Board, MED-EL Corporation
- Medical Advisory Board, Advanced Bionics Corporation
- SING Registry Board, Akouos
- US provisional patent application No. US20190192285A1 Neural predictors of language-skill outcomes in cochlear implantation patients
Variability of Outcome of Young Implanted Children

- Despite young age at CI, only a minority of children did as well as normal hearing peers.
- Prediction of high vs low performers not possible
 - Age at CI and residual hearing alone do not adequately account for variance

Niparko, et al 2010
Prediction to Develop Precision Brain Based Therapy to Improve Language

- Auditory deprivation’s impact on brain development must be taken into account
- Neural predictors based on brain structure & function to forecast **individual** outcome
Neural Predictors of Post-implant Language Based on Pre-surgical MRI

Measure language outcomes every 6-12 months

- T1 Neuroanatomical Imaging
- Diffusor Tensor Imaging (DTI)
T1 Neuroanatomic: Binary Classification Prediction on Individual Level

Graph A:
- SRQ Improvement vs. Age (Month)
- High improvement region
- Low improvement region

Graph B:
- Table of features and their accuracy (Acc), sensitivity (Sens), specificity (Spec), and AUC
- Features: Age at implant, Residual hearing
- GM: Affected = 49%, Sens = 50%, Spec = 47%, AUC = 49%
- GM: Unaffected = 73%, Sens = 80%, Spec = 71%, AUC = 78%
- GM: Whole-brain = 73%, Sens = 80%, Spec = 65%, AUC = 76%
- WM: Affected = 68%, Sens = 75%, Spec = 59%, AUC = 70%
- WM: Unaffected = 78%, Sens = 80%, Spec = 76%, AUC = 84%
- WM: Whole-brain = 76%, Sens = 80%, Spec = 71%, AUC = 82%

GM = Grey matter
WM = White matter

Feng...Young, Wong. Proceeding of the National Academy of Sciences, 2018
Brain regions unaffected by auditory deprivation are the most predictive.
- Mostly higher level auditory and cognitive regions engaged in speech perception.

Preservation of higher level processing regions is predictive of higher improvement
Diffusion Tensor Imaging (DTI)

- Non-invasive MRI
 - Additional scan time
- Tracts & connections
- Diffusion indexes
 - Fractional anisotropy (FA)
 - Radial diffusivity (RA)
 - Sensitive to myelination
 - Axial diffusivity (AD)
 - Sensitive to axonal injury
Prediction Based on MVPS Comparison Enabled by Machine Learning

- Subjects:
 - CI candidates (bilat mode to severe/profound) < 3.5 years at CI (6 – 41 months)
 - Excluding children with complicating conditions, developmental delay, brain & significant cochlear malformations
 - MRI of 31 normal hearing from NIH brain bank
 - Matched by age at MRI, sex, SES
 - Prediction of pre-CI speech perception and improvement at 6-month:
 - 52 at baseline
 - 32 at 6-month
 - Outcome measure at 6-month:
 - Speech Recognition Index in Quiet (MAIS/IT-MAIS)
MVPS Group Difference Maps (Axial) Between Normal & CI Candidates
High vs Low Performance: Classification Accuracy

Baseline Score

6-month Improvement
Predicted Regions of 6-month Improvement Overlapped with Group Difference
DTI Prediction Findings Summary

• Regions *unaffected* by auditory deprivation were most predictive of 6-month improvement

• Provides complimentary information to confirm hypothesis that *brain regions unaffected by auditory deprivation are predictive of outcome after CI*
Predict-to-Prescribe - A Conceptual Framework To Improve Language Outcome

- Brain based prediction - the first step toward personalized language learning for children with hearing loss
- Prediction is a powerful tool that may permit determination of optimal type and dose of therapy
 - Should not be used to deny care
 - Benefits to hearing beyond speech perception & language
- New approach to clinical care:
 - Improved counseling pre-CI
 - Improve language of at risk children
- Applicable to other developmental disorders
Future Pediatric Cochlear Implant Research Using Machine Learning

• Expand prediction window to 5 years, enabling hypothesis testing of theory of *Neural Readiness for Spoken Language Development*

• Compare predictive models of English learning children to Spanish learning children

• Evaluate whether Parent-Implemented Communication Treatment (PICT) can lead to larger language gains in children predicted to have poorer language outcome
Patrick C M Wong, PhD
Director, Brain & Mind Institute
Stanley Ho Professor of Cognitive Neuroscience

Xiujuan Geng, PhD
Gangyi Feng, PhD

Chinese University of Hong Kong

University of Michigan
 – Teresa Zwolan PhD & Marc Thorne MD
University of Southern California
 – Karen Johnson PhD & Courtney Voelker MD PhD
University of Miami
 – Ivette Cejas PhD & Fred Telischi MD

NIH R21DC016069-01A1
Knowles Hearing Center of Northwestern, Lurie Children’s Faculty Development Fund, Chinese University of Hong Kong, Hong Kong Research Council
Lurie Children’s Cochlear Implant Team

Since 1991, over 2100 implantations

Helping children to achieve their full potential