CANNABIS NATIONAL LABORATORY ACCREDITATION PROGRAM (CANNALAP)

REQUIREMENTS FOR LABORATORIES
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>3</td>
</tr>
<tr>
<td>Definitions</td>
<td>3</td>
</tr>
<tr>
<td>1. Program Requirements</td>
<td>4</td>
</tr>
<tr>
<td>2. Laboratory Requirements</td>
<td>4</td>
</tr>
<tr>
<td>3. Demonstration of Capability</td>
<td>8</td>
</tr>
<tr>
<td>4. Method Validation Requirements</td>
<td>8</td>
</tr>
<tr>
<td>5. Proficiency Testing</td>
<td>9</td>
</tr>
<tr>
<td>6. Records</td>
<td>9</td>
</tr>
<tr>
<td>7. Sampling</td>
<td>10</td>
</tr>
<tr>
<td>Revision History</td>
<td>14</td>
</tr>
</tbody>
</table>
INTRODUCTION

This document outlines requirements for participation in the Cannabis Laboratory Accreditation Program (CanNaLAP). The program sets out uniform requirements for sampling and testing of cannabis and cannabis-derived products.

This document is intended to complement, and not override, any state-specific regulatory requirements. The laboratory shall always meet state requirements and the requirements in this document.

The Independent Laboratories Institute (ILI) is the owner of the CanNaLAP and maintains a directory of recognized testing laboratories.

REFERENCES

Unless otherwise specified, the latest versions of reference documents apply.

ISO/IEC 17011, Conformity assessment – Requirements for Accreditation Bodies Accrediting Conformity Assessment Bodies

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories

International Conference for Harmonization (ICH) Guidelines on method validation

AOAC Accreditation Guidelines for Laboratories (ALACC)

DEFINITIONS

The terms and definitions in the referenced documents apply. When these terms are defined in regulations or rules applicable to the testing laboratory, the regulatory definitions shall apply.

Cannabis: Any of the aerial parts of a plant in the genus Cannabis.

Cannabis-derived product: Product other than cannabis itself that contains or is derived from cannabis.

Cannabis waste: Cannabis or cannabis-derived products that are not designated hazardous wastes that are discarded by a laboratory operation.

Controlled access area: Area in a laboratory where cannabis goods are present (stored, weighed, packaged, processed, tested, etc.) that is designed to physically prevent entry by anyone except authorized personnel.

Harvest batch: Specifically identified quantity of cannabis that is uniform in strain, cultivated using the same growing practices, harvested within a 72-hour period at the same location, and cured under uniform conditions.

Laboratory facility: Physical location(s) of a laboratory operation.

Laboratory operation: Person, group of persons, non-profit entity, or business entity that conducts analytical testing of cannabis and cannabis-derived products.

Monitoring: Continuous and uninterrupted attention to potential alarm signals that could be transmitted from a security alarm system located at the laboratory premises for the purpose of summoning a law enforcement officer to the premises during alarm conditions.

Monitoring company: Business that provides security system monitoring services for the laboratory.
Production batch: (a) Any amount of cannabis concentrates of the same category and produced using the same extraction methods, standard operating procedures, and identical group of harvest batch(es) of cannabis or (b) any amount of cannabis product of the same exact type and produced using the same ingredients, standard operating procedures, and production batch(es) of cannabis concentrate.

Security alarm system: Device or series of devices intended to summon law enforcement personnel during or as a result of an alarm condition.

Tamper-evident: One-time-use seal affixed to a package, allowing a person to recognize whether or not the package has been opened.

Testing sample: Specific portion of cannabis or cannabis-derived product submitted for analysis.

1. PROGRAM REQUIREMENTS

1.1. The laboratory shall conform to the requirements of ISO/IEC 17025, AOAC Accreditation Guidelines for Laboratories (ALACC), and requirements contained in this document. If a requirement of ISO/IEC 17025, ALACC, or this document is more stringent than requirements in the other documents, the assessment shall be to the more stringent requirement.

1.2. Accreditation shall be provided by an ILI recognized accreditation body.

 Note: A list of ILI recognized accreditation bodies can be found at [WEBSITE](#).

1.3. The laboratory conducting sampling shall be accredited for sampling by an ILI recognized accreditation body.

1.4. The accreditation certificate shall clearly identify that the laboratory conforms to the requirements contained in this document.

2. LABORATORY REQUIREMENTS

2.1. Laboratory Facilities Security

2.1.1. The laboratory shall ensure the use of commercial-grade, non-residential door locks at all points of ingress and egress.

2.1.2. The laboratory shall have security measures such as biometric or key card access control for all controlled access areas.

2.1.3. The laboratory shall have a security alarm system installed on all perimeter entry points and perimeter windows, and ensure premises are continuously monitored.

 Note: The laboratory may engage the services of a monitoring company to fulfill this requirement.

2.1.4. The laboratory shall have video surveillance coverage available at locations of key activities including but not limited to:

- Sample receiving
- Sample storage
- Sample weighing
- Sample destruction
2.1.5. Video surveillance equipment shall consist at a minimum of digital or network video recorders, video monitors, digital archiving devices, and a printer capable of delivering still photos.

2.1.5.1. The equipment shall have a minimum resolution of 1280 x 720 pixels with 10 frames per second (FPS), have a back-up battery, provide failure notification, and be able to record in all lighting conditions.

2.1.5.2. Placement of camera(s) shall allow for clear and certain identification of any individuals and the activities being performed.

2.1.5.3. A clear color still photo at 9600 dots per inch must be able to be obtained from the live and/or recorded camera.

2.1.6. Location and Maintenance of Surveillance Equipment

2.1.6.1. The surveillance room or area shall be a controlled-access area.

2.1.6.2. Surveillance recording equipment shall be housed in a designated, locked, and secured room or other enclosure with access limited to authorized employees, agents of the regulatory authority and relevant local jurisdiction, and state or local law enforcement agencies for any authorized state or local law enforcement purpose.

2.1.6.3. Laboratory management shall keep a current list of all authorized employees and service personnel who have access to the surveillance system and/or room.

2.1.6.4. A surveillance equipment maintenance activity log shall be kept on the premises and include all service activity including the identity of the individual(s) performing the service, the service date and time, and the reason for service.

2.1.6.5. Off-site monitoring and video recording storage shall meet the requirements of this section.

2.1.6.6. All surveillance recordings shall be kept for a minimum of 30 days.

2.1.6.7. Surveillance video recordings shall not be destroyed if the laboratory management is aware of a pending criminal, civil, or administrative investigation or any other proceeding for which the recording may contain relevant information.

2.1.6.8. Recordings shall be kept in a digital format easily accessed for viewing.

2.1.6.9. Recordings shall be archived in a format that ensures authentication of the recording as legitimately-captured video and guarantees that no alteration of the recorded image has taken place.

2.1.7. The laboratory shall ensure that installation, maintenance, and monitoring services meet state and/or local jurisdiction licensing requirements for security and alarm company operators.

2.1.7.1. In the absence of such requirements, the company providing this service shall be certified to install, maintain, and monitor an alarm system. The certification should be provided by a certification body accredited for this type of service by an IAF signatory accreditation body.

2.2. Chain-of-Custody

2.2.1. The laboratory shall develop and implement a chain-of-custody process to ensure accurate documentation of the transport, handling, storage, and destruction of samples.

2.2.2. The chain-of-custody process shall require the use of a form containing the following information:

- Laboratory name, physical address, and license number
• Producer’s name, physical address, and license number
• Unique sample identifier
• Date and time of the sample collection
• Weight of sample(s)
• Identification of tests requested
• Identification of tamper-evident seal
• Printed and signed name(s) of the supplier(s) of sample, unless credentials are captured in the laboratory information management system (LIMS)
• Printed and signed name(s) of the sampler(s), unless credentials are captured in LIMS
• Printed and signed name(s) of the transporter, if different from sampler, unless credentials are captured in LIMS
• Printed and signed name(s) of the testing laboratory employee who received the sample, unless credentials are captured in LIMS

2.2.3. Each time the sample changes custody, the date, time, and names and signatures of persons involved shall be recorded.

2.2.4. Upon receipt in the laboratory, all samples shall be compared to the chain-of-custody by a qualified member of the laboratory staff who was not involved with sampling or transportation of the items.

2.2.4.1. All differences shall be recorded and reported to management and the client upon the recognition of the disparity.

2.2.5. The laboratory shall assign a unique laboratory identification for each sample upon receipt.

2.2.6. The receiving laboratory shall separately document any differences between the quantity specified in the transport chain-of-custody and the quantities received. Such documentation shall be made in any relevant business records and account for the discrepancy.

2.2.7. The laboratory shall not accept a sample that is smaller than the standard minimum amount established in regulation or by the laboratory. If a sample is found to be smaller than its standard minimum, the laboratory personnel are required to set it aside, notify sampling personnel, and remedy.

2.2.8. Each time the sample changes custody within the laboratory, the date, time, sample weight, and names and signatures of persons involved shall be recorded.

Note: This could include but is not limited when a sample is removed from storage for testing, placed back in storage, or destroyed or disposed of.

2.2.9. The laboratory shall maintain a record system that facilitates the reconciliation of the sample weight from receipt through destruction or disposal.

2.2.9.1. The laboratory shall be able to account for loss.

2.2.10. If any portion of a test or sampling is outsourced, a chain-of-custody meeting the requirements identified in 2.2.2 shall be used.

2.3. Safety

2.3.1. The laboratory shall implement a documented safety procedure.

2.4. Personnel and Demonstration of Competence

2.4.1. Individuals responsible for the following tasks shall have, at a minimum, the qualifications stated below.
2.4.2. Overall Operation and Administration of the Laboratory

a. Doctoral degree in biological, chemical, agricultural, environmental, or related sciences from an accredited college or university and at least one year of full-time laboratory experience in a regulated laboratory environment performing analytical testing (e.g., a pharmaceutical testing laboratory or third-party testing laboratory involved in regulatory testing).

Or

b. Master’s degree in biological, chemical, agricultural, environmental, or related sciences from an accredited college or university and at least three years of full-time laboratory experience in a regulated laboratory environment performing analytical testing (e.g., a pharmaceutical testing laboratory, research laboratory, or third-party testing laboratory involved in regulatory testing).

Or

c. Bachelor’s degree in biological, chemical, agricultural, environmental, or related sciences from an accredited college or university and at least five years of full-time laboratory experience in a regulated laboratory environment performing analytical testing (e.g., a pharmaceutical testing laboratory, research laboratory, or third-party testing laboratory involved in regulatory testing).

2.4.3. Data Analysis

2.4.3.1. Associate’s degree in biological, chemical, agricultural, environmental, or related sciences from an accredited college or university and one year of full-time experience in a testing laboratory.

Note: A laboratory may decide that an individual without the degree but who is actively pursuing a degree is qualified based on the work experience.

2.4.3.2. Laboratory management may substitute a combination of education, training experience in lieu of the one years of full-time laboratory experience.

2.4.4. Sampling

a. Completed two years of study in biological, chemical, agricultural, environmental, or related sciences from an accredited college or university college or university education.

Or

b. Earned a high school diploma or passed a General Educational Development or high school equivalency exam, plus has participated in laboratory developed sampling training with at least one month of supervised sampling.

2.4.5. Quality Assurance

2.4.5.1. Bachelor’s degree in biological, chemical, agricultural, environmental, or related sciences from an accredited college or university and two years laboratory experience.

Or

2.4.5.2. Five years of laboratory or quality experience in a regulated laboratory environment performing analytical testing (e.g., a pharmaceutical testing laboratory).

2.5. Additional Training

2.5.1 Laboratory operations shall provide all employees with training that includes:

• Instructions regarding regulatory inspection preparedness and law-enforcement interactions.
• Information on applicable local, state, and U.S. federal laws, regulations, and policies relating to individuals employed in these operations, and the implications of these for such employees.
• Security measures of the laboratory.
• Diversion control measures employed by the laboratory.
• Information of the laboratory ethics requirements and penalties associated with infractions of the requirements.

3. DEMONSTRATION OF CAPABILITY

3.1. A demonstration of capability shall be completed by each analyst for each test method, technology, and a selection of representative matrices prior to analyzing real-world test samples.

3.2. The demonstration of capability shall be repeated when there are changes to analytical steps or instrumentation of the method.

3.3. Process

3.3.1. Where available, a reference material from a reference material producer accredited to ISO/IEC 17034 by an accreditation body that is a signatory of the ILAC or APAC MRA or the IAAC MLA (as applicable) shall be diluted to a volume sufficient to prepare seven aliquots to a concentration within the calibration range of the method.

3.3.2. The aliquots shall be prepared and analyzed according to the test method either concurrently or over a period of days.

3.3.3. Using all the results, calculate the mean recovery in the appropriate reporting units and the standard deviation of the population sample. When it is not possible to determine mean and standard deviation, such as presence or absence and logarithmic values, the laboratory shall assess performance against established and documented criteria.

3.3.4. Compare the mean recovery and the standard deviations of above to the corresponding acceptance criteria for precision and accuracy established through the laboratory validation. If all parameters meet the acceptance criteria, the analyst may be deemed qualified. If any of the parameters do not meet the acceptance criteria, the process shall be repeated.

3.3.5. When one or more of the tested parameters fail at least one of the acceptance criteria, corrective action is required.

4. METHOD VALIDATION REQUIREMENTS

4.1. Methods not validated in multi-laboratory collaborative studies and evaluated by independent bodies (e.g., AOAC, AFNOR, etc.) or validated by the USP, U.S. Food and Drug Administration, or World Health Organization, shall be validated in accordance with either the most recent International Conference on Harmonization (ICH) Q2B: Validation of Analytical Procedures: Methodology or the most recent United States Pharmacopeia and the National Formulary (USP-NF) General Chapter 1255 Validation of Compendial Methods or the Guidelines for the Validation of Chemical Methods for the FDA FVM Program, 2nd Edition, April 2015.
5. PROFICIENCY TESTING

5.1. The laboratory shall successfully complete a proficiency testing program or approved alternative for the tests it performs, when available.

5.2. The applicant laboratory shall have performed satisfactorily in at least one approved proficiency testing/inter-laboratory comparison (PT/ILC) activity for each scope item, where available.

5.3. The laboratory shall provide preliminary or final report issued by an approved PT/ILC provider to their Accreditation Body. The results shall be no more than one year old from the scheduled assessment date.

5.4. When available, the laboratory shall select PT/ILC providers accredited to the current version of ISO/IEC 17043 by an accreditation body that is a signatory of the ILAC or APLAC MRA or the IAAC MLA (as applicable).

5.5. In areas of testing for which suitable proficiency testing does not exist, the laboratory shall use quality control procedures for monitoring the validity of tests.

5.6. Laboratories shall participate in at least two approved PT/ILC activities each calendar year for each cannabis-related method on the scope of accreditation when available, approximately six months apart, covering as many of the analytes identified on the scope as possible. When available, the laboratory shall participate in PT/ILC activity to cover the entire range of products identified on the scope of accreditation.

5.7. The laboratory shall maintain a history of two out of the last three passing proficiency tests for each method on the scope.

5.8. The laboratory shall analyze proficiency test samples using the same procedures with the same number of replicate analyses, standards, testing analysts, and equipment as used in its standard operating procedures and/or test methods (?).

5.9. The laboratory shall take and document corrective action in accordance with its procedures when an unacceptable result is achieved on a proficiency test or ILC (?).

6. RECORDS

6.1. The laboratory shall retain all records necessary to fully account for the sample handling/testing conducted for the current year and two preceding calendar years.

6.2. The laboratory shall retain all records necessary to fully account for the proficiency test samples conducted for the current year and two preceding calendar years.

6.3. The laboratory shall retain at a minimum the following records for the current year and preceding calendar year:

- Employee list
- Secure facility information contact list: information for employees or vendors that maintain video surveillance systems and security alarm systems
- Visitor log: list of all visitors entering the controlled access areas
- Waste log: comprehensive records regarding all waste material that account for, reconcile, and provide evidence of all waste activity related to the disposal of cannabis and/or cannabis-related products.

6.4. The laboratory shall retain method validation information indefinitely. This includes the method validation report and all associated raw data.
7. SAMPLING

7.1. The laboratory performing sampling shall have a documented procedure for obtaining samples of cannabis and cannabis-derived product.

7.2. At a minimum the procedure shall include a documented process to ensure that:

- The sampling area is free of contaminants.
- A representative sample is collected.
- Samples are weighed to within 0.1 gram of accuracy using a calibrated balance that is verified by the sampler prior to use.
- Containers capable of preventing degradation or contamination are used.
- Sample containers are sealed with tamper-evident material at the time of sampling.
- A unique sample identifier to both the primary and field duplicate samples is assigned.
- Sampling tools are sanitized between each batch.
- A new pair of disposable gloves is used for each batch.
- Samples are collected and placed in the corresponding sample containers aseptically.
- Sample containers containing samples are immediately stored in accordance with how cannabis or cannabis-derived product must be stored.
- Chain-of-custody protocols are followed.
- A sample field log is completed and includes information on the conditions for transportation and storage.

7.3. A sampling plan shall be generated by the person(s) responsible for the sampling event and peer reviewed.

7.4. This plan should include at a minimum the following information:

- Client or affiliation responsible and contact information
- Harvest or production batch size
- Sample name to be sampled or sample type (oil, shatter, wax, etc.)
- Sample procedure to be followed
- Testing facility performing the analyses
- Any other additional information necessary to guide the sample team through event

7.5. The sampling plan shall ensure that samples are collected from the maximum number (all, if possible) of the harvest batch’s storage containers.

7.6. The sampling plan shall document the total number of storage containers that exist for a harvest batch and the number of containers used for sampling.

7.7. Sampling equipment shall be collected and organized in the area where the sampling shall occur and inspected prior to use. All spatulas and forceps shall be washed, isopropyl alcohol rinsed, and dried prior to sampling each batch.

7.8. Sample containers shall be new and inspected to ensure they are clean and dry prior to the sampling event.

7.9. The appropriate number of containers, defined by the laboratory, shall be collected for the sampling event and packaged appropriately.
7.10. Any containers and/or packaging used to hold samples shall be sealed and a custody seal or tamper-evident tape placed on the cooler with the sampler initials, date, and time.

7.11. The area in which the production batch sampling occurs shall be cleaned, isopropyl alcohol rinsed, and dried between sampling production batches.

7.12. Forceps and any additional sampling equipment (e.g., balances) shall be cleaned, isopropyl alcohol rinsed, and dried between sampling production batches.

Note: Caution should be taken with the use of cleaners that could potentially contain ingredients that are on the list for required testing.

7.13. Sampling shall be completed for each harvest batch or production batch or a lot.

7.14. For edibles, non-edibles, and concentrates, samples shall be only from batches in the final form, either the finished state or final packaging, as defined by regulation.

7.15. For flower, the laboratory shall obtain and analyze samples from dried or cured and ready for packaging state.

7.16. The sample amount collected shall follow state regulations at a minimum.

7.17. Samples should be collected and combined into a single package for submission to the laboratory.

7.18. A witness shall review the labeled samples to the chain-of-custody prior to the samples leaving the facility for each shipping event.

7.19. The witness shall initial the chain-of-custody indicating the labels and chain-of-custody are accurate.

7.20. The witness shall be an independent person not involved in the initial sampling.

Note: The witness can be an employee of the production facility but independent of the sampling.

7.21. For harvest batches of picked flower stored in storage containers such as plastic tubs, the harvest batch containers shall be sampled in a spatial pattern to ensure that each region of the container has been sampled. This will ensure that each container has been sampled representatively.

7.22. The sample collection shall be randomized to ensure that the storage containers throughout the batch are sampled.

7.23. The sample collection shall be randomized to ensure that the drying rack throughout the batch are sampled.

7.24. For field sampling, the entire plant shall be used in the collection of the sample. Because of the cannabinoid concentration and contaminant distribution variability at different levels of the plant, samples shall be taken from the lower, mid, and top portions of the plant. The samples shall be collected to ensure that each third section of the whole plant is represented.

7.25. The sample collection process shall include the following steps:

- Identify three thicknesses or regions of the product.
- Using a spatula or forceps, collect the determined number of subsamples needed from each region of the overall production batch to meet the minimum number of samples described above.
- The sample shall be collected and weighed to ensure the correct sample amount has been collected.
- The sample vials shall be weighed and tared to ensure that the correct amount of sample is collected. Taring the sample container means to place it on the balance, allow it to come to a
stable weight, and then zero out the balance to weigh the concentrate. Record the weight of each aliquot.

- Record the weight of the test batch on the chain-of-custody.
- Each vial shall be labeled, closed, and sealed with tamper-evident tape.

Note: The shatter, wax, or other concentrate slab may have varying degrees of thickness, thus the amounts of cannabinoids, potential residual solvents, or pesticides may vary with the thickness of the concentrate. It is important that the samples taken are equivalent from each region of thickness to provide a representative sampling of the overall product. The thinner portions of the concentrate slab will have more surface area exposed, allowing for a higher rate of diffusion of residual solvents from the wax or shatter than the thicker portions.

7.26. Oil products shall be allowed to come to room temperature prior to sampling.

- The oil shall be inverted a minimum of three times to ensure that the oil is homogenous. Each inversion shall be complete, i.e., the oil shall flow to the cap of the vial and back to the base three times. Each vial shall be weighed and tared prior to aliquoting.
- Record the weight and/or volume of each aliquot.
- Record the weight and/or volume of the test batch on the chain-of-custody.
- Each sample vial shall be labeled appropriately and then sealed with tamper-evident tape.

7.26.2. Medium Volume Oils

- Using a 0.5 mL or 1.0 mL pipette or syringe, remove the sample amount for each sample to be collected into a 4 mL borosilicate amber glass auto sampler vial or equivalent. The aliquots shall be taken at different depths of the oil to ensure that the oil is sampled representatively. The top third of the container, middle third of the container, and bottom third of the container shall be sampled. Each vial shall be weighed and tared prior to aliquoting.
- Record the weight and/or volume of each aliquot.
- Record the weight and/or volume of the test batch on the chain-of-custody.
- Each sample vial shall be labeled appropriately and sealed with tamper-evident tape.

7.26.3. Large Volume Oils

- Large volume oil containers are difficult to predict and sample. If possible, the same approach should be taken as with medium volume oils. The use of longer or larger pipettes may be required.
- Record the weight and/or volume of each aliquot.
- Record the weight of the test batch on the chain-of-custody.
- Each vial shall be labeled appropriately and the sealed with tamper-evident tape.

7.27. Cannabis Edibles

7.27.1. The procedure is designed to ensure that each sampling event shall produce samples that are representative of the production batch specified.

7.27.2. A sample of edible product shall be packaged in its finished form, ready for packaging prior to transfer to a laboratory. Each such package of product shall constitute one sample.

7.27.3. The samples should be collected in as random a fashion as possible.

7.28. The sampling record shall include the following information:

- Laboratory name, address, and, if applicable, unique identification such as license number
• Person(s) performing the sampling and their company affiliation
• Time and date of sampling
• Additional comments
• Any deviations from sampling procedure and/or sampling plans
• Person(s) reviewing the sampling process and their company affiliation
• Distributor’s name, address, and license number
• Cultivator’s, manufacturer’s, or microbusiness’s name, address, and license number
• Batch number of the batch from which the sample was obtained
• Sample matrix
• Total batch size by weight or unit count
• Total weight or unit count of the representative sample
• Unique sample identification number for each sample
• Sampling conditions or problems encountered during the sampling process, if any

7.28.1. In addition, for cannabis flower:
• Strain or variety name
• Harvest batch identification
• Harvest date
• Whether whole plant or subsection of plant was collected

7.28.2. In addition, for concentrate:
• Product name
• Lot number
• Production date
• Method of extraction

7.28.3. In addition, for cannabis edibles and non-edibles
• Product name
• Production date
• Additional comments: Note anything that may affect the quality of the data analysis, such as infusion properties, product type, etc.
• Portion size or serving size, number of servings per final packaging unit

7.29. Sample Transport

7.29.1. When the laboratory is responsible for the transportation of cannabis and/or cannabis-derived products testing samples, the following requirements apply.

7.29.2. Before transporting cannabis and/or cannabis-derived products testing samples, the transporting laboratory shall complete a transportation plan that includes:
• The name of the cannabis and/or cannabis-derived products establishment agent in charge of the transportation.
• The date and start time of the trip.
• A description of the cannabis and/or cannabis-derived products being transported.

7.29.3. When changes to the transportation plan occur prior to or during the transportation event, these changes shall be noted on the plan.

7.29.4. The laboratory shall keep a record of the transportation plan.
7.29.5. The laboratory shall ensure that the sample is transported in a manner that prevents degradation, contamination, and tampering. If the cannabis or cannabis product specifies on the label how the product shall be stored, the laboratory shall store the sample as indicated on the label.

7.29.6. Laboratory personnel who transport on behalf of a cannabis testing laboratory shall hold a valid license and shall be employed by or own the laboratory.

7.29.7. Samples shall be transported only from licensed locations to the laboratory.

Note: Pick up of cannabis and/or cannabis-derived product from multiple locations with reasonable stops, such as restroom breaks, and then transporting them to the laboratory is permissible.

7.29.8. Samples shall be accompanied by the chain-of-custody information required in section 2.2.2.

7.29.9. The vehicle used for transport shall be properly registered in the state of the laboratory pursuant to motor vehicle laws.

7.29.10. Testing samples shall be accompanied by a copy of the originating cannabis business license, identity of the driver, and all required vehicle registration and insurance information.

7.29.11. Samples shall be transported in tamper-evident packaging.

7.29.12. Samples shall be transported only inside a vehicle and shall not be visible or identifiable from outside the vehicle.

7.29.13. Samples shall be locked in a box, container, or cage that is secured to the inside of the vehicle.

7.29.14. The laboratory shall have requirements for secure transport of samples.

7.30. Sample Disposal

7.30.1. The laboratory shall have a sample disposal plan that is consistent with the applicable local requirements.

REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Release</td>
<td>Original release.</td>
</tr>
</tbody>
</table>

Cannabis Laboratory Accreditation Program
Effective: