The new, energy-efficient $33 million, 42,500 SF University Arts Building emerges as the epicenter for the University of Nevada Reno’s School of the Arts, opening the way for enhanced musical and visual arts. The three-story facility features a 287-seat recital hall, museum of art, fabrication (fab) lab, electroacoustic composition (EAC) lab, soundproof rehearsal spaces, music practice rooms, faculty office spaces, and a recording studio. Combining these spaces into a single building creates opportunities for learning, collaboration, and partnerships.

Engaging the topography of the site, the design forms an active outdoor plaza that links to campus pedestrian walkways and preserves a large grass hill. A raised walkway connects the original Church Fine Arts building with the new facility, bridging the University’s legacy with its newest chapter of expanded visual and performing arts programs.

Upon entering the University Arts Building, visitors are greeted by a multitiered lobby, connecting to the plaza, street, and bridge levels and serving as a hub and showcase for performance, display, and learning. The project sought to create premier acoustic environments for performance, recording, rehearsal, and practice spaces. The building weaves natural daylight, world class acoustics, and opportunities to expose the arts to campus and the community.

The **recital hall** employs diffusive wood and seating arrangements that simultaneously foster enhanced acoustics and provide opportunities for flexible teaching configurations. The hall’s narrow bowl shape promotes reverberation and the effect of being enveloped by sound. Lower wooden walls in the space are highly diffusive, broadcasting sound in many directions; upper side walls conceal variable acoustic drapery and acoustic diffusive panels. To accommodate a variety of performance needs, the room can be tuned and adjusted acoustically without impacting the warm wood aesthetic. The recital hall’s wraparound balcony affords audiences a unique perspective and can also provide students closer views of musician hand positions and conductor gestures.

The **EAC lab**, a first-of-its-kind in Nevada, is highly flexible, with deeply embedded technology and infrastructure that allow for a wide array of digital music composition, playback, and enhanced cross-discipline collaboration between musicians, and students in video production, visual arts, and engineering. The window into the corridor gives students a chance to see the process live without being in the room, furthering the University’s principle of exposing the arts to a larger audience. Designed as a utilitarian workshop, the fab lab offers a working area and display area, bound by glass and jutting into the plaza level lobby allowing a strong connection to and understanding of the making of art.

The **Lilley Museum of Art** features atmospheric and security protocols necessary to house and display oversized objects, antique and climate-sensitive artworks, and items of significant value, improving the University’s ability to borrow artwork from collectors and museums and to show more works from its permanent collection. An extension of the lobby, the museum allows patrons to connect with the art while attending a music performance. Its north-facing position allows abundant daylight to enter the upper level and creates a front porch effect at the lower level. At night, the north-facing window creates a beacon of light, illuminating the art objects and giving the effect that the building is glowing with artwork.

Both the design team and the University highly focused on the student experience during the design of the project. World class acoustics allow students to hear themselves better and hear each other in a new way, allowing students to strive to be better and appreciate the discipline in a deeper way. The faculty have found the building to be a lab for learning, creating and allowing new ways of teaching and rehearsal to give the students a more varied and multi-disciplinary education.
The design focuses on holistic sustainable strategies tailored to the local climate, maximizing the use of natural daylighting and utilizing energy-efficient building systems exceeding an equivalent LEED NC Silver certification. These sustainable solutions have helped achieve a 30 percent reduction from baseline campus buildings, and include energy-efficient displacement air distribution, LED lighting systems, low water xeriscape landscape planting, and a cool roof system that reduces Heat Island Effect. The acoustically sensitive nature of the building pairs well with maximizing building efficiency with mass walls and thickened insulation with a dual purpose of energy efficiency and acoustic isolation.

Building systems were designed around energy efficiency and the building’s unique acoustic and atmospheric needs. The following are the key sustainability strategies used in the design:

- 30% reduction from Baseline Campus Buildings
- Natural daylight in all occupied spaces
- Exceeding minimum energy code insulation values by 20%
- Energy-efficient displacement air distribution
- LED lighting systems
- Building water use reduction by 35%
- Large thermal mass inside the building tied to acoustic requirements
- Low-water, xeriscape landscape planting using local, native plants
- Cool roof system to reduce Heat Island Effect
- 50% Construction waste management recycling
- Certified wood sources
- Low-emitting materials and individual thermal comfort
- Triple glazed windows in acoustically sensitive spaces including the Recital Hall
The project set out to create a premier environment for students and faculty to expand their abilities in the visual and performing arts. The design strives to provide not only great acoustics, but daylight and materials to promote well-being. Low-emitting materials were standard across the project with an emphasis on recycled content. All finished wood materials were from local, certified sources. Exterior materials were chosen for durability and life cycle costs also using local materials. Materials in non-acoustically sensitive spaces were chosen for long life and durability minimizing any use of chemical cleaners or sealants. Polished concrete floors with metal ceiling tiles and interior polished CMU reduce the need for replacement and high levels of cleaning products.

The construction process followed a rigorous construction waste management plan to divert at least 50% of the construction materials from the waste stream. During design, product sizes and modules were considered to reduce cuttings and construction waste. By working with standard product dimensions, the construction process limits the amount of waste generated.

Documentation of Specific Material Choices
View from the East
Street Level Floor Plan