Forest Management Concepts
Stocking

- Description of trees occupying the site
 - Trees per acre: Planting and survival of seedlings
 - Basal area: Represents the total living tree biomass,
 - Stand density index: Integrates measures of density

- Total tree volume per acre can be maximized by increasing stocking

- Mortality increases with stocking

- Tree size can be increased by maintaining lower stocking
Pine Stocking Chart

A. Current stand
B. After thinning
C. Future stand

Dean and Baldwin
Stand

- Area of forest of similar composition and/or age that will be managed as a unit
- Smallest size is usually a practical decision
Artificial and Natural Regeneration

- Natural regeneration
 - Tree establishment from seeds and sprouts on site
 - Species and density of regeneration can be influenced by treatments

- Artificial regeneration
 - Addition of seeds or seedlings for tree establishment
 - Plantation management
Regeneration Comparison

<table>
<thead>
<tr>
<th></th>
<th>Natural</th>
<th>Artificial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocking control</td>
<td>Limited since conditions dictate density</td>
<td>Optimal of seedlings, less of seeds since over seeding is possible</td>
</tr>
<tr>
<td>Genetics</td>
<td>Native material, adapted to site, selection of seed tree phenotypes</td>
<td>Seeds/seedlings selected for specific traits</td>
</tr>
<tr>
<td>Growth</td>
<td>Rapid growth of sprouts, slow growth of new seedlings</td>
<td>Competition minimized for seedling growth, seedlings well rooted and fertilized from nursery</td>
</tr>
<tr>
<td>Cost</td>
<td>Low initial costs, later costs for density management</td>
<td>Costs for planting/seeding, even more for treatments that enhance seedling survival/growth</td>
</tr>
<tr>
<td>Rotation (years)</td>
<td>Longer</td>
<td>Shorter</td>
</tr>
</tbody>
</table>
Integrated Pest Management

- Pesticides are relatively ineffective for controlling pests in forests as compared to agriculture
- Manage tree health and pest populations to minimize economic damage
 - Identify conditions that limit management of some species (Littleleaf disease)
 - Manage to minimize or avoid pest populations (Pales weevil)
 - Improve or maintain tree vigor or health (pine beetle)
Intensive vs Extensive Management

- Intensive management aims to improve financial returns by investing in treatments that:
 - Improve site fertility (fertilization, tillage)
 - Control density and competition (Herbicides and thinning)
 - Improve seedling growth through selection of genetics

- Extensive management aims to minimize investment while producing fully stocked stands of crop trees
 - Natural regeneration and commercial thinning for density control
Forest Plantations

- Stands created by planting seedlings
- Use of agricultural techniques
 - Density control
 - Tillage
 - Fertilization
 - Herbicide application
 - Genetic Improvement
- Implication is often that plantations have lower ecological value than natural stands
 - Genetic similarity
 - Reduction in diversity
Short Rotation Woody Crops

- Dense stands of fast growing hardwoods for pulp or fuel products
- **Species:** Cottonwood, aspen, willow, eucalyptus, and gmelina
- Managed on agricultural land with intensive treatments
- May supplement lower cost supplies from traditional management
- www.woodycrops.org/
Even-Aged Management

- Whole stands managed as cohorts, cut and regenerated at the same time
- Some variation in age (20% of rotation age) to account for sources of regeneration:
 - Older seedlings or new sprouts

[Images: Clearcutting, Seed Tree Cut]
Rotation Age

- The length of time needed for a stand of trees to reach maturity

- Rotation length is determined by the specific stand objectives expressed in biological or financial terms
 - Biological maturity – Year or years that the growth rate has peaked
 - Financial maturity – Year where the interest rate applied equals or exceeds the value growth in the stand
Uneven-aged Management

- Multiple age classes (at least 3) are managed in the within one stand.
- In each treatment cycle, Create conditions for regeneration, thin crop trees, and remove non crop trees.

Single tree or Group selection
Cutting Cycle

- Period of time between harvesting activities in an uneven-aged stand
- Activities are meant to:
 - Harvest mature trees/create regeneration sites
 - Thin pole sized trees
 - Remove damaged/noncrop trees

FIGURE 10-7
Comparison of precut stand structure with the residual diameter distribution recommended by Arbogast (1957) for the uneven-aged northern hardwood stand described in notation 10-2.

Nyland, 2002
Even-aged vs Uneven-aged

<table>
<thead>
<tr>
<th></th>
<th>Even-aged</th>
<th>Uneven-aged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mgmt costs</td>
<td>Lower since treatments applied to whole stands</td>
<td>Higher since treatments applied to groups of trees</td>
</tr>
<tr>
<td>Stand growth</td>
<td>Faster</td>
<td>Slower</td>
</tr>
<tr>
<td>Appearance</td>
<td>Poor during harvest and regeneration</td>
<td>About the same</td>
</tr>
<tr>
<td>Mgmt period</td>
<td>Rotation</td>
<td>Cutting cycle</td>
</tr>
<tr>
<td>Income</td>
<td>Sporadic</td>
<td>Periodic</td>
</tr>
</tbody>
</table>
Discounting, NPV, and SEV

- To put revenue and income spent in different years on the same scale, owners discount (charge interest) both costs and revenue to the present.
 - Discounted Revenues – Costs = Net Present Value
- Each rotation yields a value (NPV) so an infinite series of the value of one rotation is the value of the land, Soil Expectation Value (SEV)
NPV

<table>
<thead>
<tr>
<th>Activity</th>
<th>Year</th>
<th>Cash flow ($/ac)</th>
<th>Discounted (CF), 7% interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical site prep</td>
<td>1</td>
<td>-80</td>
<td>(-80/(1.07)^1 = - 74.76)</td>
</tr>
<tr>
<td>Planting</td>
<td>2</td>
<td>-75</td>
<td>-65.51</td>
</tr>
<tr>
<td>Herbicide release</td>
<td>7</td>
<td>-65</td>
<td>-40.48</td>
</tr>
<tr>
<td>Thinning</td>
<td>17</td>
<td>450</td>
<td>142.46</td>
</tr>
<tr>
<td>Fertilization</td>
<td>18</td>
<td>-200</td>
<td>-59.17</td>
</tr>
<tr>
<td>Thinning</td>
<td>24</td>
<td>1000</td>
<td>197.15</td>
</tr>
<tr>
<td>Final harvest</td>
<td>30</td>
<td>2000</td>
<td>262.73</td>
</tr>
<tr>
<td>Mgmt costs</td>
<td>1-30</td>
<td>-8</td>
<td>-99.27</td>
</tr>
<tr>
<td>Hunting lease</td>
<td>1-30</td>
<td>2</td>
<td>24.82</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>+287.96</td>
</tr>
</tbody>
</table>
NPV, IRR, and SEV

- If the cost of money was 7% investor is $288 ahead
- The rate of return (IRR) is greater than 7%,
 - Value determined by trial and error
 - NPV @ 10% = 44.57, @11% -1.53
 - IRR is almost 11%
- The value of the acre for perpetually growing trees in this scenario is Soil Expectation Value:
 - $288 + 288/((1.07)^{30} - 1) = 331.51$
Forestry Financial Decisions

- Determine the hurdle rate (interest rate)
 - Alternative rate of return, inflation, risk
- Determine the financial effect of practices by applying growth models
- Determine the cash budget available
- Allocate cash to projects prioritized by rate of return until all the cash is gone
- If there are ties:
 - Cheaper ones first
 - Shorter ones first
Old-Growth

- Old forests relatively free of disturbance
 - Namely human disturbance

- Characteristics
 - Some old, large trees
 - Standing dead trees
 - Multi-layered canopy
 - Uneven-aged

- www.forestencyclopedia.net/p/p1854/
Allowable Cut and Sustained Yield

- Sustained Yield Management develops harvest or use levels that produce a stable annual supply
 - For timber the allowable cut (AC) for each year defines the pathway toward sustained yield
 - The AC changes as forest conditions change (age, health, growth, species)
 - The AC calculated for any year may not be sustainable since managers are expected to recalculate periodically
Growth and Drain

- For large inventories the change in growing stock (potential harvestable trees) level from one inventory period to the next may be:
 - Growth: Size of trees, new trees in inventory
 - Removals: Harvest of growing stock trees
 - Mortality: Death of whole trees or loss of volume (breakage, rot)
- Ratio of Growth to Removals > 1 is though to be “sustainable”
Alabama Growth and Drain 2008

![Graph showing growth and drain for softwood and hardwood with G/D ratios of 1.25 and 1.49 respectively.](image-url)
Sustainability

- Refers to people, not nature
- Ecologic, social, and economic aspects
- Generational equity
 - Will our descendents be as well off?
Sustainability

- Dynamic
 - Solutions must change with knowledge and changing present and future needs
- Sustainability is like driving a really wide road, it’s not necessary to be in the center, just stay out of the ditches.