Systems Approaches in the SGB Sector
Agenda

Goals:
- Develop an understanding of what we mean by “systems approaches”
- Learn about the basics of different systems tools and share experiences using these tools to understand entrepreneurship ecosystems
- Consider ways that systems approaches could be integrated into entrepreneurship ecosystem support programming

Takeaway:
- Concrete ideas for how to integrate systems tools into your work

Sections:
- Brief introduction to “systems”/“system approaches” (5 minutes)
- Discussion of why you might use systems approaches, and what tools can be used (20 minutes)
- Brainstorm and share specific examples of how to start integrating systems approaches/tools into work (30 minutes)
What Separates Systems Approaches?

<table>
<thead>
<tr>
<th>Account for:</th>
<th>Breakdown the System by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Complexity</td>
<td>• Elements</td>
</tr>
<tr>
<td>• Dynamics</td>
<td>• Relationships</td>
</tr>
<tr>
<td>• Feedback loops</td>
<td>• Boundaries</td>
</tr>
<tr>
<td>• Dependencies</td>
<td>• Perspectives</td>
</tr>
<tr>
<td>• Non-linearity</td>
<td>• Inputs/Outputs</td>
</tr>
<tr>
<td>• Unintended consequences</td>
<td>• Function/Purpose</td>
</tr>
<tr>
<td>• Others?</td>
<td></td>
</tr>
</tbody>
</table>

What aspects/insights related to entrepreneurship ecosystems might systems approaches “catch” that other methods might miss?

At what points in your programming might these approaches be useful?
What Tools can be Used in Systems Approaches?

Tool: Causal Loop Diagramming

Helps to Understand: Factors and the interactions/feedback loops among them

Can be Used to Identify: Specific intervention focus areas

Pros: Highly visual and comprehensive

Cons: Need a strong methodology for determining up-front the causal links
What Tools can be Used in Systems Approaches?

Tool: Social Network Analysis (SNA)

Helps to Understand: Interactions among actors in a system

Can be Used to Identify: Clusters of actors; Influential/Bridging actors; overall structure of relationships

Pros: Provides a visual and quantitative look at relationships; Allows for change to be tracked over time

Cons: Data collection can be time consuming/expensive; Does not tell why relationships are structured a certain way
What Tools can be Used in Systems Approaches?

Tool: Factor Mapping

Helps to Understand: Overall influence and dependence of different factors

Can be Used to Identify: Factors to be targeted with interventions, factors to protect, and factors to ignore

Pros: Quantifies factor relationships to allow for analysis

Cons: Needs every factor to be considered against ever other factor, limiting the number of factors that can feasibly be included
What Tools can be Used in Systems Approaches?

Tool: Dynamic/Predictive Modeling

Helps to Understand: How a system *might* change due to an intervention

Can be Used to Identify: The intervention that will have the greatest impact

Pros: Allows for prediction of a range of outcomes

Cons: GIGO; can lead to overconfidence
What Tools can be Used in Systems Approaches?

Tool: Qualitative Comparative Analysis (QCA)

Helps to Understand: Which combinations of factors might lead to the same outcome; Which factors are necessary/sufficient for a given outcome

Can be Used to Identify: Why different factors might be targeted depending on which other factors are present in a given context

Pros: Framework for rigorously converting qualitative data on a small number of cases into easy-to-understand insights on which factors are most important

Cons: Relies on well-structured interview data and case selection

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (no)</td>
<td>0 (no)</td>
<td>1 (yes)</td>
<td>0 (no)</td>
<td>0 (no)</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>0 (no)</td>
<td>0 (no)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>0 (no)</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>0 (no)</td>
<td>1 (yes)</td>
<td>0 (no)</td>
<td>0 (no)</td>
<td>0 (no)</td>
<td>4</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>0 (no)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1 (yes)</td>
<td>0 (no)</td>
<td>0 (no)</td>
<td>0 (no)</td>
<td>0 (no)</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 (yes)</td>
<td>0 (no)</td>
<td>1 (yes)</td>
<td>0 (no)</td>
<td>0 (no)</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>0 (no)</td>
<td>0 (no)</td>
<td>0 (no)</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>0 (no)</td>
<td>1 (yes)</td>
<td>6</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>1 (yes)</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Consistency
SYSTEMS APPROACHES IN PRACTICE
Applying Systems Approaches

In groups of 2-4, each participant selects an issue area or problem of interest. This could be a particular country context you are working in, a particular sector, or the design for an active/upcoming program.

As a group, consider how systems approaches could be useful for each of these issue areas or problems. You can think about specific tools that could be applied, or just an overall reflection on what you could learn from a systems approach.

In 20 minutes, we will report out on:

• At least one issue area/problem for each group
• In what ways a systems approach could be useful for that issue area/problem, including any specific tools that could be used
• How the insights from a system approach could potentially change specific decisions in terms of your activities
• Any other interesting tidbits from the discussion