Osteochondritis Dissecans of the knee

Corey R. Troxell, D.O.
October 9, 2012
OMED 2012
Osteochondritis Dissecans

- OCD
- Condition of joints that affects subchondral bone
- Secondary Effects on articular cartilage
- With progression may disrupt the integrity of cartilage and bone
 - Cartilage flaps
 - Loose bodies
 - Inflammatory synovitis
 - Effusion
 - Secondary joint degeneration
Osteochondritis Dissecans Etiology

- Unclear
 - Repetitive Microtrauma
 - Vascular insufficiency
 - Genetic factors
 - Knee most commonly involved
 - Lateral aspect of medial femoral condyle
 - Ankle
 - Talus
 - Recurrent Ankle sprain
 - Persistent pain following sprain
 - Elbow
 - Capitellum
 - Throwing athlete
OCD Classification

- Location
- Fragmentation
- Displacement
- Growth plate status

- X-ray
- Bone Scan
- MRI
- Intraoperative
OCD - Typical Patient

- 10 to 15 years
- Male to female
 - 2:1
- Bilateral
 - 15-30%
 - Screening of contralateral side
OCD - Genetic Factors

- Questionable genetic predisposition
- OCD Associated with:
 - Dwarfism
 - Tibia vara
 - Legg-Calve-Perthes
 - Stickler syndrome
OCD - Vascular Factors

- Possible etiology
- No evidence of osteonecrosis
- Paucity of vascular supply
 - Medial femoral condyle near PCL insertion
- Reparative process arrested at fibrocartilage stage
 - Poor blood supply?
OCD - Traumatic Factors

- 40% Report history of trauma
- Shear forces on cartilage and subchondral bone
- Repetitive Microtrauma
- Difficult to distinguish between OCD and osteochondral fractures
 - Radiographic
 - Histological
OCD - Clinical Presentation

- Open Physes
 - Juvenile-onset OCD
- Closed Physes
 - Adult-onset OCD
 - Delayed onset of previously asymptomatic lesion
OCD - Clinical Presentation

- Pain
 - Generalized
 - Anterior
- Swelling
 - Intermittent
 - Activity related
- Mechanical symptoms
 - Catching
 - Locking
 - Giving way
OCD - Clinical Exam

- Inspection
- Palpation
 - Medial femoral condyle
 - Flexion
- Range of Motion
- Strength
- Ligamentous Stability
- Mensical testing
OCD - Physical Exam

- External rotation of tibia during gait
 - Avoid impingement of tibial eminence on OCD of medial femoral condyle
- Wilson’s test
 - Internal rotation of tibia between 30° and 90°
 - Reproduces pain
 - Relieved with external rotation
 - Poor predictive value
OCD - Radiographs

- AP and lateral
 - Weightbearing
- Sunrise
 - Patellar lesion suspected
- Notch view/Tunnel view
 - Knee bent 30° to 50°
 - Posterior condyle
OCD - Radiographic Features

- Open vs. Closed Physis
 - Closed poorer
- Location of Lesion
 - Atypical poorer
- Size of Lesion
 - Larger poorer
- Presence of Loose Bodies
- Sclerosis
 - Poor predictor of healing
- Potential dissection
OCD X-Ray Classification

- Cahill and Berg
 - 15 alphanumeric zones
 - 5 medial to lateral
 - 3 anterior to posterior
OCD Xray and Bone Scan Classification

- Cahill and Berg
 - Stage 0
 - Normal in both
 - Stage 1
 - Defect on plain radiograph
 - No uptake on bone scan
 - Stage 2
 - Increased uptake in lesion but not surrounding condyle
 - Stage 3
 - Increased uptake in lesion and condyle
OCD - Xray and Bone Scan

- May suggest healing potential
- Higher healing potential
 - Open physes
 - Uptake on bone scan
OCD - Xray Classification

- Berndt and Harty
 - Initially described talar lesions
 - Stage I
 - Small area of subchondral bone compression
 - Stage II
 - Partially detached fragment
 - Stage III
 - Completely detached fragment
 - Remains in crater
 - Stage IV
 - Complete detachment
 - Loose body
MRI Features of OCD

- Valuable for OCD assessment
- Fluid behind lesion
- Partial/Complete detachment
- Cartilage breech
 - Low signal intensity on rim
 - Fibrous tissue

- Instability criteria
 - Increased signal ≥5 mm diameter beneath lesion
 - Focal defect ≥5mm in articular surface
MRI - OCD

- MR Arthrogram
 - May aid in detecting instability
- Cartilage-specific sequence MRI
 - Distinguish between synovial fluid, fibrocartilage, and degenerated or lytic subchondral bone

Larsen et al
OCD - MRI Classification

- Dipaola et al
- Grade I
 - No break in articular cartilage
 - Thickening of articular cartilage
- Grade II
 - Articular cartilage breached
 - Low signal rim behind fragment
 - Fibrous attachment
- Grade III
 - Articular cartilage breached
 - High signal behind fragment
 - Fluid
- Grade IV
 - Loose body with defect of articular surface
The clinical utility and diagnostic performance of MRI for identification and classification of knee osteochondritis dissecans

• Systematic search
• Limited available evidence
• Supports use of MRI to detect stability or instability of lesion
OCD - Intraoperative Classification

- Guhl
- Cartilage integrity and stability
- Type I
 - Softening of cartilage
 - No breech of cartilage
- Type II
 - Breeched cartilage
 - Stable
- Type III
 - Definable fragment/Flap
 - Partially attached
- Type IV
 - Loose body
 - Osteochondral defect
OCD Intraoperative Assessment

- Size
- Number of loose fragments
- Bone associated with fragment
- Quality of underlying bone
OCD Prognosis

- No randomized, controlled clinical trials
- Predictors for surgical intervention
 - Physeal maturation
 - Dissection of lesion from subchondral bone
 - Size and location of lesion
 - Integrity of articular surface
OCD Prognosis

- Hefti et al 1999
 - Large multicenter review
 - 509 knees in 452 patients
 - No dissection better prognosis
 - Pain and swelling not indicative of dissection
 - Xray and CT do not predict dissection
 - Scleros has a poor response to drilling
 - Lesions ≥2 cm have worse prognosis
 - Surgery outcomes better than nonoperative in dissection
 - Lesions in classic location better prognosis
 - Adult onset
 - 42% abnormal radiographs after treatment
 - Juvenile onset
 - 22% abnormal radiographs after 3 years
OCD Treatment

- Nonsurgical
 - Promote healing
 - Prevent displacement
- Surgical
 - Repair native cartilage
 - Restoration procedures
OCD Nonsurgical Management

- Activity modification
- Crutches/Restricted weightbearing
 - Allow range of motion exercises
- Braces or casting
 - Noncompliant
- Symptom control
 - Acetaminophen
 - Theoretical negative influence of NSAIDs on bone healing
OCD Surgical treatment

- Drilling
 - Transchondral drilling
 - Retrograde drilling
- Repair
- Debridement/Excision
- Reconstructive Techniques
 - Evolving
Surgical management of juvenile osteochondritis dissecans of the knee

- 39 studies systematic review
- Significant improvements (nearly all)
 - Clinical
 - Radiographic
 - Short, mid, and long-term follow-up.
- Isolated excision of weight-bearing OCD
 - Poorer clinical and radiographic results
- Outcomes better with juvenile OCD versus adult OCD
Drilling

- Stable lesions failed conservative treatment
- Normal articular cartilage
- Stimulate vascular ingrowth for subchondral bone healing
- Anterograde technique
 - Transchondral drilling
- Retrograde technique
 - Fluoroscopic assisted to avoid penetrating articular cartilage
Functional and Radiographic Outcomes of Juvenile Osteochondritis Disseccans of the Knee Treated With Extra-Articular Retrograde Drilling

- 31 patients
- 4 year follow up
- Knee scores significantly improved
- Radiographs showed stable or improved lesions
- Avoid drilling through articular cartilage
Drilling Juvenile Osteochondritis Dissecan: Retro-or Transarticular?

- Systematic Review
- 65 studies
 - 12 met inclusion criteria
- No clear differences in patient oriented outcomes
- Radiographic healing
 - 86% retroarticular
 - 91% transarticular
- No complication reported for either
Surgical Repair

- Unstable lesions
- Fixation choices
 - K-wires, cannulated screws, Herbert (Headless) screws, bone pegs
 - Metal hardware requires removal
- Biodegradable implants
 - Pins/darts, screws
 - No need for removal
 - May cause reaction/synovitis
Case 1 OCD Repair

• History
 • 18 yo male with sudden pain and swelling after twisting knee playing football
 • Minor intermittent pain and swelling for preceding 6 months

• Exam
 • Large Effusion
 • Decreased Range of Motion
 • No obvious Ligamentous Instability
 • Medial tenderness
Case 1 X-rays
Case 1 _ MRI

- Unstable lesion
 - Cartilage disrupted laterally
- Fluid tracking
 - Laterally
 - Behind bone
Case 1 IntraOp

- Lesion identified
- Unstable anterior and lateral
 - Hinged
- Slight fragmentation
 - Anterior and posterior
- Proceed with open repair
Case 1 IntraOp

- Repaired with combination of Bioabsorbable headless screws and darts
Reconstruction

- Microfracture
- Osteochondral Autologous Transplantation (OATS)
- Autologous Chondrocyte Implantation
- Osteochondral allograft
- Articular Cartilage allograft
- Evolving
 - Biomimetic Osteochondral Scaffold
 - Bone Marrow Derived Cell Transplantation
 - Bone Cartilage Paste Graft
Microfracture

- Performed for area of articular cartilage defect
- Multiple penetration hole through to subchondral bone
- Stimulate healing response
- Fibrocartilage is formed
- Does not create new hyaline cartilage
- Most useful in small lesions
Osteochondral Autologous Transplantation (OATS)

- Non-articulating cartilage moved to defect area
- Harvested as plug of cartilage and subchondral bone
- Useful in medium sized lesions
 - <2 cm²
A Prospective, Randomized Clinical Study of Osteochondral Autologous Transplantation Versus Microfracture for the Treatment of Osteochondritis Dissecans in the Knee Joint in Children.

- 50 patients
 - 25 each group
- Both groups improved
- More patients in OAT group maintained good or excellent results.
- MRI showed good or excellent repairs in more OAT patients at 18 month follow up
Autologous Chondrocyte Implantation (ACI)

- Non-articulating cartilage is harvested
- Chondrocytes grown in lab
- Chondrocytes re-implanted
 - Patch sewn over defect
 - Periosteum
 - Commercially available membrane
 - Chondrocytes injected behind patch
Outcomes of Autologous Chondrocyte Implantation in Study of the Treatment of Articular Repair (STAR) Patients with Osteochondritis Dissecans

- Case Series
- 40 patients with one failed non-ACI treatment
- 32 patients completed 48 month followup
- 85% successful
 - Clinically and statistically significant improvements
 - Pain
 - Symptoms
 - Sports and recreation ability
 - Activities of daily living
 - Knee-related quality of life
 - 35% had subsequent surgical procedure
 - Debridement of lesion
Fresh Frozen Osteochondral Allograft

- Large plug from cadaveric femoral condyle implanted in defect
- Size matched
Can Fresh Osteochondral Allografts Restore Function in Juveniles With Osteochondritis Disssecans of the Knee?

- Retrospective Review
- 11 Children with OCD treated with fresh osteochondral allografting
- All returned to activities of daily living at 6 months
- All returned to full sports activities between 9 and 12 months
- Followup radiographs at 2 years showed full graft incorporation
Allograft Juvenile Cartilage

- Minced cadaveric cartilage tissue
 - Donors 2 years old and younger
 - Chondrocytes with Proliferation Potential

- Early promising results
 - May be equal or superior to ACI

- No independent studies
 - Company driven studies available
Case 2 Juvenile Cartilage Allograft

- 30 yo male
- Large 6 cm² osteochondral defect
- 6 month postop scope unrelated lateral pain
- Healed hyaline or hyaline like cartilage
How to Treat Osteochondritis Dissecans of the Knee: Surgical Techniques and New Trends

- 60 patients
- 5 techniques
 - OATS
 - ACI with bone graft
 - Biomimetic nanostructured osteochondral scaffold
 - Bone Cartilage Paste Graft
 - Bone Marrow derived Cell Transplantation Technique
- All achieved good clinical and radiographic results
- Trend towards better results with ACI
Additional Techniques

Surgical Techniques

A. Massive Autologous Osteochondral Transplantation

B. Bone-Cartilage Paste Graft

C. 2nd Generation Autologous Chondrocyte Implantation + Bone Graft

D. Biomimetic Osteochondral Scaffold

E. BMOC Transplantation
Osteochondritis Dissecans

Summary

- Etiology still not fully understood
- Preserving native cartilage and bone best (if possible)
 - Conservative
 - Stable lesions
 - Repair
 - Stable lesions that do not heal
 - Unstable lesions
- Reconstructive techniques have good results if repair not possible or if repair fails
Thank You!
References

References (cont)