Normal Scapular Function

Scapular Osseous Components
- Inferior Angle

- Arise from several ossification centers with varying ages of coalescence:
 - Coracoid: 14-18yo
 - Acromion: 19-20yo
 - Inferior Angle: 18-20yo
 - Glenoid Fossa: 20-25yo

Presentation Goals
- Provide an understanding of normal Scapular Function and Motion.
- Discuss the importance of the Scapula within the Kinetic chain of the Throwing athlete.
- Describe clinical examination techniques for evaluation of Scapular Function and pathology.
- Define Scapular Dyskinesis and the role it plays in shoulder injury and pathology.
Normal Scapular Function

Basic Anatomy: Scapula is enveloped by multiple muscular layers.

- **Anterior Scapular Muscle Attachments:**
 - Triceps
 - Biceps (Short and Long Heads)
 - Coracobrachialis
 - Subscapularis
 - Serratus Anterior
 - Pectoralis Minor
 - Omohyoid

- **Posterior Scapular Muscle Attachments:**
 - Triceps
 - Biceps (Long Head)
 - Deltoid
 - Supraspinatus
 - Infraspinatus
 - Teres Major
 - Teres Minor
 - Levator Scapulae
 - Latissimus Dorsi
 - Rhomboid Major and Minor

Scapular Bursae:

- **Infra serratus Bursa (Bursa Musculorum Serrata):**
 - Lies between Serratus Anterior and Chest Wall
 - Inflamed = Inferior Angle Pain

- **Supraserratus Bursa (Bursa Musculorum Angularis Superioris Scapulae):**
 - Lies between Subscapularis and Serratus Anterior
 - Inflamed = Superior Angle Pain

- **Scapulotrapezial Bursa:**
 - Lies between Supraspinatus and Trapezius
 - Contains the Spinal Accessory Nerve.
Normal Scapular Function

- Scapular Anatomic Positioning at Rest:
 - Anteriorly Rotated (relative to trunk) approx 30°
 - Medial Border Rotated
 - Inferior Pole diverged 3-5° from Spine
 - Anteriorly Tilted 20° in sagittal plane

Normal Scapular Function

- Scapulothoracic Anatomy & Function:
 - Scapular Postural Support
 - Levator Scapulae & Upper Trapezius
 - Scapular Retraction
 - Middle Trapezius & Rhomboids
 - Scapular Protraction
 - Serratus Anterior
 - Upward Scapular Rotation
 - Serratus Anterior & Trapezius
 - Scapular Elevation
 - Upper Trapezius & Levator Scapulae

Normal Scapular Function

- A. Scapular Posterior Tilting
- B. Scapular Superior Rotation
- C. Scapular External Rotation
- D. Clavicular Elevation
- E. Clavicular Protraction
Normal Scapular Function

Dynamic Anatomy:
- Humeral movement in relation to Glenoid.
- Glenohumeral Ligament and Labral static constraint on Humeral Translation.
- Rotator Cuff dynamic constraint on Glenohumeral Motion.

The Scapula is intimately involved in each one of these functions.

Normal Scapular Function

Glenohumeral Articulation
- Scapula must continually move to maintain instant center of rotation.
- Proper glenoid alignment optimizes function of articulations and rotator cuff to allow concentric GH-Motion.
- Scapulothoracic positioning determines position and inclination of both Glenoid and Inferior Glenohumeral Ligament.
- Improper alignment can lead to GH Instability.

Normal Scapular Function

Thoracic Wall Articulation
- Scapular Retraction (external rotation) facilitate cocking position.
- Scapular Lateral Protraction (internal rotation) allows acceleration.
- Scapular Anterior Thoracic Translation allows maintenance of normal GH position and dissipation of deceleration forces.
Normal Scapular Function

Acromial Elevation
- Serratus anterior activation results in traction related superior acromial elevation.
- Occurs during cocking and acceleration phases of throwing, and during arm elevation.
- Allows for reduction of impingement and coracoacromial arch compression.

Normal Scapular Function

Kinetic Chain
- Scapula serves as a link in Proximal-to-Distal sequencing of Velocity, Energy, and Forces of shoulder function.
 - Generation, Summation, Transference
 - Scapula serves as pivotal link of transference of large forces/high energy from lower body/core to the arm/hand.
- Allows arm stabilization to absorb force loads through long lever dynamics to reduce injury.

Scapular Motion

Normal Scapular Dynamics:
- Bilateral Posterior Tilting, External Rotation, & slight Superior Translation during elevation of arm.
- Symmetrical motion patterns.
- No prominent medial or superior scapular borders.
Scapular Dyskinesis

Scapular Dyskinesis

- Alterations in **STATIC** scapular position and **DYNAMIC** scapular motion resulting in scapular asymmetry in gross postural assessment and function movement.

Scapular Dyskinesis

- Affects normal Scapulohumeral Rhythm (SHR).
- May lead to articular and/or soft tissue shoulder dysfunction.
- May result in shoulder pathology and injury.
- May result from injury causing inhibition of scapular stabilization.

Nonspecific Response: No specific pattern of dyskinesis is associated with a specific shoulder diagnosis.

Contributing Factors

- **Bony Posture & Injury**
 - Increased Thoracic Kyphosis
 - *Scapular Protraction*
 - Acromial Depression
 - Clavicle Fractures
 - AC Joint Injury
 - Disrupt normal progression of scapular rotation
Scapular Dyskinesis

Contributing Factors

- **Muscle Function Alteration**
 - Long Thoracic Nerve → Serratus Anterior
 - Spinal Accessory Nerve → Trapezius

- **Muscle Inhibition/Weakness**
 - Common in Glenohumeral Pathology
 - Nonspecific response to shoulder pain
 - 68% RC Abnormalities
 - 94% Labral Tears
 - 100% GH Instability

- **Contracture/Inflexibility**
 - Pectoralis Minor/SH-Biceps
 - Anterior Tilted Scapula
 - **GIRD**
 - "Wind-Up" Effect
 - Glenoid and Scapula pulled in forward inferior direction
 - May result in ↑ protraction during arm-ADDucted position

Associated Shoulder Pathology:

- Subacromial Impingement
- Glenohumeral Instability
- Glenoid Labral Injury
- Rotator Cuff Injury
Assessing Scapular Dyskinesis

Clinical Examination
- Kinetic Chain Evaluation:
 - Leg/Trunk Muscle Strength
 - Lumbar Lordotic Posture
 - Pelvic Alignment
 - Iliac Rotations, SI Instability/Dysfunction
 - Hip ROM
 - Thoracic Alignment/Posture
 - Thoracic Kyphosis, Scoliosis
 - Cervical Posture
 - Cervical Lordosis

Assessing Scapular Dyskinesis

- Examine patient from behind with arms at rest at sides.
- Examine Scapular Motion as arms are elevated and lowered within scapular plane.
- Examine Scapular Motion as arms are elevated and lowered within the sagittal plane.

Types of Scapular Dyskinesis

- **Type I**
 - Prominence of Inferior Medial Scapular Angle
 - Primarily abnormal rotation around a transverse axis
 - Results in excessive anterior scapular tilt

- **Type II**
 - Prominence of entire Medial Scapular Border
 - Results in abnormal rotation around a vertical axis
 - Associated with excessive scapular internal rotation

- **Type III**
 - Prominence of Superior Scapular Border
 - Results in excessive superior scapular translation

- **Type IV**
 - Normal, Symmetrical scapular motion
Assessing Scapular Dyskinesis

Observational Clinical Assessment
- 4-Type Method versus Yes/No Method
 - Easily available
 - Wide variance of Inter-Rater Reliability
 - (4-Type) Sensitivity 10%-54%; Specificity 62%-94%
 - (Yes/No) Sensitivity 74%-78%; Specificity 31%-38%
 - Limited assessment of multiple-plane asymmetries

3D EM Kinematic Analysis
- Lab-based, limited availability
- Allows for multiple-plane assessment
- Detected asymmetry may not be clinically relevant

Uhl et al. Arthroscopy, 25(11); 2009

Assessing Scapular Dyskinesis

Yes/No Method
- Improved Inter-Rater Agreement (79%)
 - Allows consideration beyond a single-plane of motion
 - PPV = 74%
- Displays Sensitivity (76%) & Specificity (35%) similar to other clinical shoulder exam tests.
 - Clinical SLAP tests: Mean Sensitivity 57%; Specificity 41%
 - Clinical Instability tests: Mean Sensitivity 71%; Specificity 38%
 - Clinical Impingement tests: Mean Sensitivity 68%; Specificity 49%

Scapular Dyskinesis

Prevalence of Scapular Asymmetry
- 71%-78% (3D Kinematics) of population at large

Symptomatic vs. Asymptomatic
- Additional factors:
 - Ligamentous Laxity, Muscle Imbalance, Side Dominance
- Plane of Assessment may determine clinical relevance
 - Forward Flexion Motion Asymmetry increased in Symptomatic (54%) versus Asymptomatic (14%) patients.
 - Increased Serratus Anterior activity
Effects of Scapular Dyskinesis

Loss of Retraction/Protraction
- **Retraction Loss**
 - stable “Cocking” point or base for arm elevation.
 - ↑ Impingement as scapula rotates inferior and anterior.
- **Protraction Loss**
 - ↑ deceleration forces in GH Joint.
 - Functional Glenoid Anteversion.
 - ↑ shear stresses on anterior stabilizing structures.
 - ↑ posterior impingement

Loss of Superior Elevation
- Decreased Acromial Elevation
- Predisposes Subacromial Impingement.
- Inhibition of Serratus Anterior and Lower Trapezius

Loss of Kinetic Chain Function
- Disruption of transferal of lower extremity and core forces to the upper extremity.
 - ↓ Strength and Energy Use
 - ↓ Acceleration Velocity

10/24/13

References