Esophagectomy

DuyKhanh P Ceppa, MD
Assistant Professor of Surgery
Overview

• History
• Basic tenets
• Various approaches
• Special Considerations
• Outcomes
History

• Cervical esophageal resection: Billroth

• Thoracic esophagus:
 – Dobromysslow (1901)
 – Franz (1913)
 – Ohsava (1933)
 – Sweet (1942)
 – Ivor Lewis (1946)
 – McKeown (1972)
 – Orringer & Sloan (1978)
Basic Principles

• Resection
 – Transabdominal/transhiatal
 – Transthoracic
 – Combined (abdominal & thoracic)

• Conduit
 – Stomach
 – Jejunum
 – Colon

• Anastomotic technique
 – End-to-end, end-to-side, side-to-side
 – Hand-sewn, stapled
Basic Principles

• Resection
 – Transabdominal/transhiatal
 – Transthoracic/thoracoabdominal
 – Combined (abdominal & thoracic)

• Conduit
 – Stomach
 – Jejunum
 – Colon

• Anastomotic technique
 – End-to-end, end-to-side, side-to-side
 – Hand-sewn, stapled
Basic Principles

• Resection
 – Transabdominal/transhiatal
 – Transthoracic
 – Combined (abdominal & thoracic)

• Conduit
 – Stomach
 – Jejunum
 – Colon

• Anastomotic technique
 – End-to-end, end-to-side, side-to-side
 – Hand-sewn, stapled
Basic Principles

• Resection
 – Transabdominal/transhiatal
 – Transthoracic
 – Combined (abdominal & thoracic)

• Conduit
 – Stomach
 – Jejunum
 – Colon

• Anastomotic technique
 – End-to-end, end-to-side, side-to-side
 – Hand-sewn, stapled
Transhiatal Esophagectomy
Ivor Lewis Esophagectomy
McKeown (3-incision) Esophagectomy
Operative Steps

- Esophageal mobilization
- Gastric mobilization
- Lymphadenectomy
- Conduit formation
- Reconstruction
- Jejunostomy tube placement
- Gastric emptying procedure
Operative Steps

- Esophageal mobilization
- Gastric mobilization
- Lymphadenectomy
- Conduit formation
- Reconstruction
- Jejunostomy tube placement
- Gastric emptying procedure
Operative Steps

- Esophageal mobilization
- Gastric mobilization
- Lymphadenectomy
- Conduit formation
- Reconstruction
- Jejunostomy tube placement
- Gastric emptying procedure
Operative Steps

- Esophageal mobilization
- Gastric mobilization
- Lymphadenectomy
- Conduit formation
- Reconstruction
- Jejunostomy tube placement
- Gastric emptying procedure
Operative Steps

- Esophageal mobilization
- Gastric mobilization
- Lymphadenectomy
- Conduit formation
- Reconstruction

- Jejunostomy tube placement
- Gastric emptying procedure
Operative Steps

• Esophageal mobilization
• Gastric mobilization
• Lymphadenectomy
• Conduit formation
• Reconstruction

• Jejunostomy tube placement
• Gastric emptying procedure
Pros & Cons of Esophagectomy Types

<table>
<thead>
<tr>
<th></th>
<th>Transhiatal</th>
<th>Ivor Lewis</th>
<th>McKeown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>No thoracotomy incision</td>
<td>Thoracic anastomotic leak rates lower</td>
<td>Extensive lymphadenectomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extensive lymphadenectomy</td>
<td></td>
</tr>
<tr>
<td>Con</td>
<td>Cervical anastomotic leak rates higher</td>
<td>Thoracic anastomotic leaks are more morbid</td>
<td>Cervical anastomotic leak rates higher</td>
</tr>
<tr>
<td></td>
<td>More limited lymphadenectomy</td>
<td>2 incisions</td>
<td>3 incisions</td>
</tr>
<tr>
<td></td>
<td>Transhiatal</td>
<td>Ivor Lewis</td>
<td>McKeown</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Pro</td>
<td>No thoracotomy incision</td>
<td>Thoracic anastomotic leak rates lower</td>
<td>Extensive lymphadenectomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extensive lymphadenectomy</td>
<td></td>
</tr>
<tr>
<td>Con</td>
<td>Cervical anastomotic leak rates higher</td>
<td>Thoracic anastomotic leaks are more morbid</td>
<td>Cervical anastomotic leak rates higher</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 incisions</td>
<td>3 incisions</td>
</tr>
</tbody>
</table>
Pros & Cons of Esophagectomy Types

<table>
<thead>
<tr>
<th></th>
<th>Transhiatal</th>
<th>Ivor Lewis</th>
<th>McKeown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>No thoracotomy incision</td>
<td>Thoracic anastomotic leak rates lower</td>
<td>Extensive lymphadenectomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extensive lymphadenectomy</td>
<td></td>
</tr>
<tr>
<td>Con</td>
<td>Cervical anastomotic leak rates higher</td>
<td>Thoracic anastomotic leaks are more morbid</td>
<td>Cervical anastomotic leak rates higher</td>
</tr>
<tr>
<td></td>
<td>More limited lymphadenectomy</td>
<td>2 incisions</td>
<td>3 incisions</td>
</tr>
</tbody>
</table>

Personalizing approach to the patient

<table>
<thead>
<tr>
<th>Transhiatal</th>
<th>Ivor Lewis</th>
<th>McKeown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign pathology</td>
<td>Malignant pathology GEJ cancers</td>
<td>Malignant pathology Mid-esophageal cancers</td>
</tr>
</tbody>
</table>
Special Consideration--Conduit

- **Stomach**
 - Most commonly used
 - Good functional result
 - Can be used for intrathoracic or cervical anastomosis
 - Reflux is related to anastomotic location

- **Colon**

- **Jejunum**
Special Consideration--Conduit

- Stomach
- Colon
 - Right or left colon; isoperistaltic
 - Can be used for intrathoracic or cervical anastomosis
 - 3 anastomoses
 - More technically difficult
- Jejunum
Special Consideration--Conduit

- Stomach
- Colon
- Jejunum
 - Roux-en-Y reconstruction, pedicled interposition graft or free graft
 - Usually can reach only as high as the pulmonary hilum
 - 2-3 anastomoses
Special Consideration—Location of Anastomosis

<table>
<thead>
<tr>
<th>Intrathoracic</th>
<th>Cervical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower anastomotic leak rate (7%)</td>
<td>Higher anastomotic leak rate (~13%)</td>
</tr>
<tr>
<td>Anastomotic leaks are more morbid</td>
<td>Anastomotic leaks are less morbid</td>
</tr>
<tr>
<td>Anastomotic leaks are more easily managed with stents</td>
<td>Anastomotic leaks are difficult to stent</td>
</tr>
<tr>
<td>Increased pulmonary complications</td>
<td>Recurrent laryngeal nerve injury (9%)</td>
</tr>
<tr>
<td>Increased pain</td>
<td></td>
</tr>
<tr>
<td>Longer recovery</td>
<td></td>
</tr>
</tbody>
</table>
Special Consideration—Anastomotic Technique

- Hand-sewn vs. stapled

- End-to-end vs. end-to-side vs. side-to-side
 - End-to-end used mostly in pediatric setting
Post-operative Course

• Inpatient
 – POD 0-1: resuscitation, not acidotic, pain control
 – POD 2-5: pulmonary toilet, ambulate, bowel function
 – POD 5-7: evaluation for anastomotic leak
 – POD 7-10: advance diet, discharge planning

• Outpatient
 – 2-4weeks return to 50% preop status
 – 4-8wks removal of j-tube
 – 2-6mths back to normal
Post-operative Course

• Inpatient
 – POD 0-1: resuscitation, not acidotic, pain control
 – POD 2-5: pulmonary toilet, ambulate, bowel function
 – POD 5-7: evaluation for anastomotic leak
 – POD 7-10: advance diet, discharge planning

• Outpatient
 – 4wks return to 50% preop status
 – 4-8wks removal of j-tube
 – 2-6mths back to normal
Complications

• Pneumonia (11%)
• Arrhythmia
• Anastomotic leak (5.5%)

• Less common
 – Chyle leak (2.8%)
 – ARDS (4%)
 – Small bowel obstruction, post-op ileus (4.5%)
 – Wound infection (6.3%)
 – 30-day mortality (3.9%)
Minimally Invasive Esophagectomy

• Transhiatal = laparoscopy + left neck

• Ivor Lewis = laparoscopy + right thoracoscopy

• McKeown = right thoracoscopy + laparoscopy + left neck
• Single institution case series (n=1033)
 – Anastomotic leak (requiring surgery) rate 5%
 – Gastric conduit ischemia 2%
 – Vocal cord palsy 4% (1% for Ivor Lewis; 8% for McKeown)
 – 30-day mortality 1.7% (0.9% for Ivor Lewis; 2.5% for McKeown)
 – Pneumonia & chyle leak not reported
• Oncologic outcomes
 – Median number of lymph nodes resected 21
 – Overall 1-yr survival for Stage I 89%, Stage II 79%, Stage III 63%, Stage IV 44%
Minimally Invasive Versus Open Esophagectomy for Esophageal Cancer: A Comparison of Early Surgical Outcomes From The Society of Thoracic Surgeons National Database

Smita Sihag, MD, Andrzej S. Kosinski, PhD, Henning A. Gaissert, MD, Cameron D. Wright, MD, and Paul H. Schipper, MD

• n=3170 (MIE: 814; open: 2356)
 – MIE longer OR times (443min vs. 312min, p<0.001)
 – MIE higher rates of reoperation & empyema
 – Open higher rates of wound infection, transfusion & ileus
 – MIE shorter median LOS (9days vs. 10 days, p<0.001)
 – Anastomotic leak rate (5-8%), morbidity (62%) & 30-day mortality(4%) were equivalent
Summary

• Indications for esophagectomy
 – Esophageal cancer
 – End-stage benign esophageal disease

• Types of esophagectomy
 – Transhiatal (laparotomy; cervical anastomosis)
 – Ivor Lewis (laparotomy, thoracotomy; intrathoracic anastomosis)
 – McKeown (3-incision; thoracotomy, laparotomy; cervical anastomosis)

• MIE & open have similar outcomes
Esophagectomy

DuyKhanh P Ceppa, MD
Assistant Professor of Surgery