MULTIDISCIPLINARY APPROACH TO COMPLEX AORTIC SURGERY

Rick Bello, MD, PhD
Division of Cardiac Surgery
UMass Memorial Medical Center
DISCLOSURES

• None
WHAT DEFINES “COMPLEX AORTIC SURGERY”?

• Bavaria: “If it involves the arch, it’s complex”

• If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck (J. deVaucanson 1730s)

• Justice Potter Stewart in Jacobellis v. Ohio (1964) while describing hard-core pornography
 – “I shall not today attempt further to define the kinds of material I understand to be embraced within that shorthand description; and perhaps I could never succeed in intelligibly doing so. But I know it when I see it”
WHAT DEFINES “COMPLEX AORTIC SURGERY”?

• Anatomic
 - Multiple aortic segments
 - Malperfusion

• Procedural
 - Reoperations
 - Concomitant procedures
 - Use of cerebralspinal protection strategies / hypothermia
 - Staged procedures
 - Urgency
 - Technical complexity

• Comorbid conditions

• Outcomes
 - Elevated risk of death and complications
 - Extended LOS / recovery period

• Surgeon and Center experience
 - ?relative to some standard
EVOLUTION OF THE “TEAM”

• Previously treatment was surgeon-driven
 – Planning, execution, postop care, long-term followup
 – Ascending replacement, elephant trunk, TAA/TAAA repair

• Newer techniques and treatment modalities
 – Vascular surgeons
 – Anesthesiologists
 – Intensivists
 – Radiologists
ACUTE TYPE A DISSECTION
CLASSIFICATION OF AORTIC DISSECTION

STANFORD
Type A
Type B

DEBAKEY
Type I
Type II
Type III

NORMAL
ASCENDING AORTIC REPLACEMENT

- Developed in the early 1960s by DeBakey
- Cooley: open distal anastomosis
- Excludes entry tear, protects from rupture, valve dehiscence, coronary dissection
- Outcomes
 - 90% hospital survival
 - 50%-70% 5 years survival
 - ~50% mortality at 48h without surgery
- Late complications
 - Pseudoaneurysm
 - Expansion – patent false lumen, true lumen area <30%
 - Reoperation – 25%
HEMIARCH REPLACEMENT

• Additional exclusion of affected arch tissue

• Survival
 – 90% hospital survival
 – 80%, 68%, 51% @ 1, 5, 10 years survival

• Freedom from reintervention
 – 99%, 97%, 90% @ 1, 5, 10 years
 – Predictors:
 • Marfan’s
 • Persistent false lumen

Bartosz et al., JTCVS 2014, 148:6
FALSE LUMEN PATENCY
FATE OF THE DISTAL AORTA

• Patency of the false lumen: 31%-89%
 - Secondary entry tears – natural vs iatrogenic
 - Anticoagulation

• Distal aortic dilation
 - Early and late occurring
 - 1 – 3 mm per year ***
 - False lumen patency
 - Hypertension and lack of beta blockade
 - Diameter > 4cm or false lumen area >70%

• Freedom from reoperation: 77% @ 10 years
 - Marfan’s
 - Survival following reoperation: 80-90%

Kirsch et al., Archives of Cardiovascular Disease (2011) 104, 125—130
TOTAL ARCH REPLACEMENT AND THE ELEPHANT TRUNK PROCEDURE

• Converts a potential 3-stage intervention to 2-stage
 - Ascending aortic replacement
 - Arch replacement
 - Descending thoracic aortic replacement / thoracoabdominal

• Compared to hemiarch
 - Longer circulatory arrest and cross-clamp times
 - Increase neurologic morbidity
 - Increased mortality: 40% → 20%
 - Unchanged freedom from reoperation

• Reserved for younger pts and connective tissue disorders

Borst (1983)
Roselli et al., JTCVS (2015) 149:2S, S117
NEUROPROTECTION

• RCP (Lemole, 1982)
 - Used with femoral cannulation with minimal alteration of the CPB circuit
 - No need to clamp great vessels
 - Surface cooling but poor capillary perfusion
 - Cerebral edema (CVP > 20 mmHg)
 - Evacuation of emboli

• ACP (Kazui, 1989)
 - Physiologic flow with excellent capillary perfusion
 - Cumbersome to implement
 - Obstructed operative field
 - Superior to RCP for longer circ arrest times
CANNULATION STRATEGIES

• Femoral
 - Quick and simple via cutdown or percutaneous approach
 - Proximal malperfusion
 - Favored in unstable patients
 - Cannulate the side with the weaker pulse

• Axillary artery cannulation
 - Typically not involved
 - Direct vs side-arm graft
 - Simplifies unilateral ACP
 - Minimal cerebral ischemic time

Sabik et al., JTCVS 1995;109:885-90
ALTERNATIVE CANNULATION STRATEGIES

• Left common carotid artery via sidearm
• Left subclavian artery via sidearm
• Ultrasound and wire-guided cannulation of the proximal aorta
 - Bleeding around cannula
 - Rupture
• LV transapical
ADVANCEMENTS IN GRAFT TECHNOLOGY
NEWER TECHNIQUES
COMPLETION REPAIR (OPEN)
COMPLETION REPAIR (OPEN)

• Thoracotomy or thoracoabdominal incision
• Single lung ventilation
• Spinal cord ischemia
 – CSF drain, reimplantation of important intercostals, distal perfusion (Left heart bypass vs full CPB)
• Pulmonary injury
• Splenic/renal injuries
• Bowel, hepatic, renal ischemia
• Technically demanding
• Long postop recovery
• 19%-60% of pts never returned; 12-25% of pts died awaiting completion
TEVAR (THORACIC ENDOVASCULAR AORTIC REPAIR)

• Pioneered by Volodos (1986) and Parodi (1990) → FDA approval in 1999

• TEVAR – Dake (1992) → FDA approval in 2005

• Dependent on adequate landing zones (>2cm)

• Access vessels
TEVAR DEVICES

WL Gore cTAG
Cook Alpha
Medtronic Valiant
Bolton Relay
ADVANTAGES OF TEVAR

• Minimally invasive
• Shorter procedure times
• Decreased blood loss / transfusion
• Decreased LOS
• Faster recovery
• Results from the Gore TAG trial (140 TEVAR vs 94 open pts)
 - 30d mortality 2.1% vs 11.7%
 - SCI: 2.9% vs 13.8%
 - 5yr aneurysm related mortality: 2.8% vs 11.7%
 - Vascular complications: 14%; Endoleak @ 1yr: 6%
TEVAR FOR DISSECTION

• INSTEAD trial
 - TEVAR in uncomplicated acute or chronic Type B dissection
 - “Negative” trial: no difference in mortality @ 2yrs
 - Higher early mortality with TEVAR
 - TEVAR: favorable false lumen thrombosis, aortic remodeling, aorta specific mortality at 5 yrs

• ADSORB trial
 - TEVAR in uncomplicated acute Type B dissection
 - Improved false lumen thrombosis and reduction in rupture rate and aortic size @ 1 yr

• Similar findings from single center studies
RETROGRADE TEVAR

• First reported by Miller (1995) using a custom endograft
• Replaces open 2nd/3rd stage procedure
• Avoids thoracotomy
• Suitable for inoperable patients
• 15\% mortality at 2yrs
• Transient paraparesis
• Caudal migration

Greenberg et al., Circulation. 2005;112:2619-2626
HYBRID DEBRANCHING
HYBRID DEBRANCHING

- Creates an adequate proximal landing zone
- No need for CPB
- Intact Circle of Willis
- Cerebral oximetry
- Minimizes the extent of surgical dissection
- Less bleeding
- Earlier 2nd stage completion
FROZEN ELEPHANT TRUNK

- First reported by Kato (1996)
- Antegrade deployment of TEVAR device via the open aortic arch during 1st stage arch procedure
- Proximal end of the TEVAR device sutured to arch graft
- Eliminates the need for 2nd stage retrograde TEVAR
- Creates proximal landing zone for subsequent procedures
FROZEN ELEPHANT TRUNK OUTCOMES

• Leontyev et al. (2013)
 - 30d mortality 7.8%, stroke 11.8%, paraplegia 19.6%
 - Temp ≥28°C and circ arrest time >45min

• Tian et al (2013)
 - Meta-analysis of 17 reports
 - Mortality 8.3%, stroke 4.9%, SCI 5.1%, 5yr survival 63%-88%

• Antegrade deployment of TEVAR device via the open aortic arch during 1st stage arch procedure
• Proximal end of the TEVAR device sutured to arch graft
• Eliminates the need for 2nd stage retrograde TEVAR
• Creates proximal landing zone for subsequent procedures
COMPOSITE FET DEVICES (INVESTIGATIONAL)
THORAFLEX HYBRID (INVESTIGATIONAL)

- Hannover experience
 - 34 pts
 - Thoraflex Hybrid
 - Acute dissection and aneurysms

- US trial currently enrolling (exp completion July 2021)
FENESTRATED ENDOVASCULAR AORTIC REPAIR (FEVAR)
ASCENDING AORTIC AND ARCH GRAFTS (INVESTIGATIONAL)
ASCENDING AORTIC AND ARCH GRAFTS
SUMMARY

- Multiple factors contribute to the complexity of aortic disease
- Significant progress has been made in surgical technique, neuroprotection, conventional and endovascular graft technology
- Increasing complexity more readily manageable with multimodal approaches
- Await results of the Thoraflex Hybrid trial
- Future directions: Ascending aortic and branched arch grafts
QUESTIONS?