RENAL MANAGEMENT IN THE CARDIOTHORACIC/VASCULAR PATIENT

CYRIL KURIAKOSE, MD, FASN
NEPHROLOGY ASSOCIATES OF CENTRAL FLORIDA
ASSISTANT PROFESSOR OF MEDICINE
UNIVERSITY OF CENTRAL FLORIDA COLLEGE OF MEDICINE
OVERVIEW

- AKI in the CVICU/VTICU
- Electrolyte Disturbances
- Acid-Base Considerations
- Volume Assessment and Management
- Diuretic Regimens
- CRRT Indications and Prescriptions
CLINICAL CASE

• 62 year-old male with PMH of HTN, DM, OSA and AS is admitted after a syncopal event. Patient undergoes echocardiography which reveals an AVA of 0.7. The patient undergoes AVR, and his intraoperative course was complicated by hypotension which requires vasoactive therapy. The following day, his serum creatinine increases from 1.0 (preop) to 1.5. His urine output has also decreased over the last 6 hours. What is the next step to confirm your diagnosis?
ACUTE KIDNEY INJURY

• RIFLE classification
 • Simple, readily available clinical tool to classify AKI in different populations
 • Good outcome predictor, with a progressive increase in mortality with worsening RIFLE class
 • Also suggests that even mild degrees of kidney dysfunction may have a negative impact on outcome
Classifiction of AKI according to RIFE criteria

- **Risk**
 - Increased creatinine $\times 1.5$ or GFR decrease $>25\%$
 - Urine output (UO) $<0.5 \text{ ml kg}^{-1} \text{ h}^{-1}$

- **Injury**
 - Increased creatinine $\times 2$ or GFR decrease $>50\%$
 - UO $<0.5 \text{ ml kg}^{-1} \text{ h}^{-1}$ for 12 h

- **Failure**
 - Increased creatinine $\times 3$ or GFR decrease $>75\%$ or creatinine $\geq 4 \text{ mg per } 100 \text{ ml}$ (acute rise of $\geq 0.5 \text{ mg per } 100 \text{ ml})$
 - UO $<0.3 \text{ ml kg}^{-1} \text{ h}^{-1}$ for 24 h or anuria for 12 h

- **Loss**
 - Persistent ARF = complete loss of renal function $>4 \text{ weeks}$

- **ESRD**
 - End-stage renal disease

RIFE defines three grades of severity of AKI on the basis of either:

- acute increase in serum creatinine
- decrease in GFR
- decreased urine output.
AKIN CRITERIA

<table>
<thead>
<tr>
<th>Stage</th>
<th>Creatinine criteria</th>
<th>Urine output criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5 - 2 x baseline (or rise ≥ 26.4 μmol/L)</td>
<td>< 0.5 ml/kg/hour for > 6 hours</td>
</tr>
<tr>
<td>2</td>
<td>>2 - 3 x baseline</td>
<td>< 0.5 ml/kg/hour for > 12 hours</td>
</tr>
<tr>
<td>3</td>
<td>> 3 x baseline (or > 354 μmol/L with acute rise ≥ 44 μmol/L)</td>
<td>< 0.3 ml/kg/hour for 24 hours or anuria for 12 hours</td>
</tr>
</tbody>
</table>
CLINICAL CASE

• 62 year-old male with PMH of HTN, DM, OSA and AS is admitted after a syncopal event. Patient undergoes echocardiography which reveals an AVA of 0.7. The patient undergoes AVR, and his intraoperative course was complicated by hypotension which required vasoactive therapy. The following day, his serum creatinine increases from 1.0 (preop) to 1.5. His urine output has also decreased over the last 6 hours. What is the next step to confirm your diagnosis?

• A. IVF challenge
• B. Diuretic trial
• C. Urine microscopy
• D. Renal US
• E. Echocardiogram
AKI MANAGEMENT

• Treat underlying disorder
• Avoid nephrotoxic insults
• Review dosing of renally cleared drugs
• Optimize hemodynamics (both MAP and CO)
• Monitor and treat volume overload or depletion, optimize electrolyte and acid-base status
• Assess for RRT indications: AEIOU
• No renal benefit to dopamine or mannitol
CLINICAL CASE

• 71 year-old female with PMH of CKD, HTN, DM and CAD presents to the ER with complaints of palpitations and chest pain. She admits to not adhering to a prescribed renal diet. Labs done in the ER are notable for a potassium of 8.4, bicarbonate of 18 and creatinine of 5.8. Rhythm strip is shown below. What is the next best step in management?
ELECTROLYTE DISTURBANCES

• Hyperkalemia
 • Causes: transcellular shifts, decreased GFR, hypoaldosteronism, medications
 • Symptoms: weakness, paresthesias, palpitations, myocardial irritability

• Hypokalemia
 • Causes: transcellular shifts, GI or renal losses
 • Symptoms: nausea, vomiting, weakness, muscle cramps
ELECTROLYTE DISTURBANCES

• Hypercalcemia
 • Symptoms: neuropsych disturbances, GI abnormalities, NDI, nephrolithiasis, AKI, CV disease, muscle weakness, bone pain

• Hypocalcemia
 • Symptoms: tetany, seizures, CV issues, papilledema, psych manifestations
ELECTROLYTE DISTURBANCES

• Hypophosphatemia
 • Causes: increased insulin secretion, acute resp alkalosis, hungry bone, inadequate intake, medications, chronic diarrhea, vit D deficiency, HPTH, Fanconi, PD/CRRT, thiazide diuretics
 • Symptoms: metabolic encephalopathy, paresthesias, seizures, coma, decreased myocardial contractility, diaphragmatic paralysis, proximal myopathy, dysphagia, ileus, rhabdomyolysis, hemolysis, heme dysfunction
ELECTROLYTE DISTURBANCES

• Hypomagnesemia
 • Causes: PPIs, EtOH, DM, CNI, hypercalcemia, familial renal wasting syndromes, volume expansion, diuretics, aminoglycosides, ampho B, cisplatin, dig
 • Symptoms: NM excitability (similar to hypocalcemia), weakness, CV manifestations, hypokalemia
CLINICAL CASE

- 71 year-old female with PMH of CKD, HTN, DM and CAD presents to the ER with complaints of palpitations and chest pain. She admits to not adhering to a prescribed renal diet. Labs done in the ER are notable for a potassium of 8.4, bicarbonate of 18 and creatinine of 5.8. Rhythm strip is shown below. What is the next best step in management?

A. Ca gluconate administration
B. Insulin/D50
C. 1 ampule of sodium bicarbonate
D. Albuterol NEB
E. Hemodialysis
CLINICAL CASE

• 52 year-old male with PMH of HTN, CKD and CAD presents to the ER after having a VT arrest in the field. He is successfully resuscitated after 5 minutes of ACLS protocol, current intubated and sedated, on two vasoactive agents. Labs are notable for Na 130, K 5.1, Cl 100, HCO3 14, BUN 48, Cr 2.5, Glc 122. ABG is as follows: 7.22/38/13/100 on 60%FiO2. What test would you order next to determine the etiology of this patient’s acid-base disturbance?
ACID-BASE CONSIDERATIONS

• Metabolic Acidosis
 • DDx: Lactic acidosis, ketoacidosis (starvation, DM, EtOH), ingestions, diarrhea, RTA, diuretics (CA inhibitor), ureteral diversion, CKD
 • Rx: HCO₃ (but only when indicated eg. pH<7.1-7.2), fix underlying etio, RRT

• Metabolic Alkalosis
 • DDx: Vomiting/NGT suction, diarrhea, mineralocorticoid excess, diuretics (loop or thiazide), posthypercapnea, hypercalcemia, severe hypokalemia, alkali therapy, contraction
 • Rx: fix underlying etiology, rarely need to correct with acetazolamide
ACID-BASE CONSIDERATIONS

• Acute vs. Chronic
• Respiratory Acidosis
 • DDx: CNS depression, NM disorders, airway abnormalities, lung parenchyma abnormalities
 • Rx: treat underlying etiology
• Respiratory Alkalosis
 • DDx: hypoxia → hyperventilation, primary hyperventilation
 • Rx: oxygenate, fix underlying etiology
CLINICAL CASE

• 52 year-old male with PMH of HTN, CKD and CAD presents to the ER after having a VT arrest in the field. He is successfully resuscitated after 5 minutes of ACLS protocol, current intubated and sedated, on two vasoactive agents. Labs are notable for Na 130, K 5.1, Cl 100, HCO3 14, BUN 48, Cr 2.5, Glc 122. ABG is as follows: 7.22/38/13/100 on 60%FiO2. What test would you order next to determine the etiology of this patient’s acid-base disturbance?

• A. Methanol level
• B. Procalcitonin level
• C. Urinalysis
• D. Lactate
• E. BNP
CLINICAL CASE

- 80 year-old male with PMH of CHF (EF 15-20%), DM, CAD, HTN is admitted to the CVICU for cardiogenic shock following CABG surgery complicated by intra-op cardiac arrest. Labs are relatively unremarkable, with the exception of a BNP of 74,000. PE shows 1-2+ edema, JVP is difficult to assess. Latest CVP is 16. Urine output has been 100-150cc/hr postop thus far on a lasix gtt at 10ml/hr. What is the next best step in management?
VOLUME ASSESSMENT

• Physical Exam
• CXR
• CVP
• PAC/SGC
• TTE
• SVV
• IVC diameter
VOLUME MANAGEMENT

• “To be (wet) or not to be (dry), that is the question”
• Surgical perspective
 • Offload an overworked, congested heart as quickly as possible
• Nephrologic perspective
 • Avoid rapid fluid shifts with consequent hypotension and/or intravascular volume depletion and subsequent AKI
• Use your data and clinical experience to arrive at a mutual endpoint (nephro, CCM and surgical teams)
Hormones Acting on the Nephron / Diuretics and Their Site of Action

Diuretic site of action:
1. Acetazolamide
2. Osmotic diuretics (e.g., mannitol)
3. Loop diuretics (e.g., furosemide)
4. Thiazides (e.g., HCTZ)
5. Potassium-sparing (e.g., spironolactone)
INTERMITTENT VS. CONTINUOUS DIURETIC THERAPY

• In the setting of ADHF, continuous diuretic therapy resulted in
 • Greater net diuresis
 • Greater reductions in BNP from admission to discharge
 • Worsened renal filtration function
 • Use of additional treatment
 • Higher rates of rehospitalization or death at six months
AQUAPHERESIS

- As compared to maximal diuretic regimens
 - Higher rates of AKI
 - No significant differents in weight loss, mortality or rate of hospitalization at 60 days
 - Higher rates of AEs
CLINICAL CASE

• 80 year-old male with PMH of CHF (EF 15-20%), DM, CAD, HTN is admitted to the CVICU for cardiogenic shock following CABG surgery complicated by intraop cardiac arrest. Labs are relatively unremarkable, with the exception of a BNP of 74,000. PE shows 1-2+ edema, JVP is difficult to assess. Latest CVP is 16. Urine output has been 100-150cc/hr postop thus far on a lasix gtt at 10ml/hr, and overall fluid balance is -500cc over the last 24 hours. What is the next best step in management?

• A. Stop lasix gtt and change to alternative loop diuretic
• B. Increase lasix gtt to 20ml/hr and add metolazone 5mg PO daily
• C. Initiate aquapheresis therapy
• D. Start CRRT
CLINICAL CASE

• 42 year-old male with no PMH has a cardiac arrest while jogging, he is resuscitated after approximately 10 minutes and is taken straight to the cath lab upon arrival to the hospital. LHC shows no CAD and IABP is placed. Patient decompensates further and is on maximal vasoactive therapy and ventilator support, with inability to oxygenate adequately. The patient subsequently is started on ECMO therapy. His latest labs are notable for Na 130, K 5.6, HCO3 16, BUN 60, Cr 2.5 (on admission Cr was 1.3 approximately 24 hours ago). The patient has been anuric for the past 12 hours. What is the next best step for management of this patient’s AKI?
CRRT

• Is an extracorporeal blood purification therapy intended to substitute for impaired renal function over and extended period of time and applied for or aimed at being applied for 24 hours a day.

• Indicated in any patient who meets criteria for hemodialysis therapy but cannot tolerate intermittent hemodialysis due to hemodynamic instability
GOALS OF CRRT

• Mimic the functions and physiology of the native organ
• Qualitative/quantitative blood purification
• Restoration/maintenance of homeostasis
• Avoid complications and achieve clinical tolerance
• Provide conditions favoring recovery of renal function
CRRT INDICATIONS

• Fluid overload
• AKI (either de novo or superimposed on progressive CKD)
• Life-threatening electrolyte/acid-base disturbances
 • Metabolic acidosis
 • Hyperkalemia
 • Hyper/hypocalcemia
PRINCIPLES OF CRRT

- Vascular access
- Semi-permeable membrane
- Transport mechanism
- Dialysate and replacement fluid
CRRT MODALITIES

• Slow Continuous Ultrafiltration (SCUF)
 • Ultrafiltration
• Continuous Veno-Venous Hemofiltration (CVVH)
 • Convection
• Continuous Veno-Venous Hemodialysis (CVVHD)
 • Diffusion
• Continuous Veno-Venous Hemodiafiltration (CVVHDF)
 • Diffusion and Convection
CRRT COMPLICATIONS

• Bleeding
• Hypothermia
• Vascular access issues
• Fluid volume deficit (intravascular volume depletion)
• Hypotension
• Inadequate electrolyte or bicarbonate replacement during CRRT
• Blood loss (clotting of filter or hemorrhage due to over-anticoagulation)
• Air embolism
• Arrhythmias or circulatory shock
• Hemolysis
CRRT PRESCRIPTIONS

- Modality
- Anticoagulation
- Blood Flow Rate
- Dose and Effluent Flow Rate
- Ultrafiltration Rate
- Solutions (Na/K/HCO3/Ca/Glc)
CRRT AND ECMO

• Initiation of CRRT in ECMO patients is simply an indicator of severity of illness and fatality

• Mortality is higher in these patients as compared those receiving ECMO alone

• The combination of ECMO and CRRT in a variety of methods appears to be a safe and effective technique that improves fluid balance and electrolyte disturbances

• In the absence of primary renal disease, chronic renal failure did not occur after concurrent use of CRRT with ECMO
CLINICAL CASE

• 42 year-old male with no PMH has a cardiac arrest while jogging, he is resuscitated after approximately 10 minutes and is taken straight to the cath lab upon arrival to the hospital. LHC shows no CAD and IABP is placed. Patient decompensates further and is on maximal vasoactive therapy and ventilator support, with inability to oxygenate adequately. The patient subsequently is started on ECMO therapy. His latest labs are notable for Na 130, K 5.6, HCO3 16, BUN 60, Cr 2.5 (on admission Cr was 1.3 approximately 24 hours ago). The patient remains hemodynamically unstable and on maximal vasoactive support, CVPs have been uptrending. The patient has been anuric for the past 12 hours. What is the next best step for management of this patient’s AKI?

• A. Administer lasix 80mg IV
• B. Give albumin 25g
• C. Repeat labs in 12 hours
• D. Initiate Dialysis
• E. Initiate CRRT
BOTTOM LINE

• AKI in the CT/VTICU is not rare
• Diagnose, identify underlying etiology and treat accordingly
• Pay close attention to electrolyte and acid-base status
• Volume assessment highly variable and management is extremely difficult
• CRRT may be necessary, but in general is overutilized in CT/VTICUs
• Use a multidisciplinary approach with nephrology, critical care and surgery involved
ANY QUESTIONS?

• ckuriakose@nacfla.com