Optimization of Hemodynamics in Mechanical Circulatory Support Patients

Craig S. Jabaley, MD
Assistant Professor of Anesthesiology, Emory University
CVICU Medical Director, Emory University Hospital
Chief of Surgical Critical Care, SICU Medical Director, Atlanta VAMC
Disclosures

• I have no relevant financial disclosures or conflicts of interest.
• We will be discussing off-label applications of medical devices.
Learning Objectives

• Understand the impact of various mechanical circulatory support (MCS) approaches on cardiac pressure-volume relationships.
• Describe the role of left ventricular unloading with veno-arterial MCS.
• Summarize the importance of recognizing biventricular failure.
• Manage hemodynamic alterations associated with veno-venous extracorporeal membrane oxygenation.
Important Caveat

• MCS devices and approaches vary significantly
• Clinical substrate is markedly heterogeneous
• No two MCS patients are alike
Quick Review
Left-Sided Mechanical Circulatory Support
Generally Speaking...

Three common left-sided support configurations:

• Right atrium or central venous circulation → systemic artery
 • Veno-arterial MCS (i.e. VA ECMO)

• Left atrium → systemic artery (i.e. aorta)
 • TandemHeart (trans-septal cannulation)

• Left ventricle → systemic artery (i.e. aorta)
 • Implanted
 • Left-ventricular assist devices
 • Percutaneous
 • Impella
 • (HeartMate PHP)
RA → Ao

- Baseline:
 - High LVEDP
 - Low pressure generation
 - Low stroke volume
 - Low EF
- As we increase flow:
 - Increased LV afterload
 - Increased effective arterial elastance (Ea)
Sequelae of LV Overload

• Pulmonary edema
• Prolonged, or thwarted, recovery
 • Impaired remodeling
 • Wall stress
 • Increased myocardial oxygen consumption
• Hypercoagulability
Unloading the LV

- Manipulation of peripheral resistance
 - Baroreceptors
 - Pharmacologically
 - Vasodilators
 - Flow adjustment
 - Mechanically
 - IABP

D Burkhoff et al. J Am Coll Cardiol. 2015
Unloading the LV

- Improve LV function
 - Increased coronary perfusion (Ao pressure)
 - Normalize myocardial oxygen delivery
- Normalize acid/base
- Inotropes

D Burkhoff et al. J Am Coll Cardiol. 2015
<table>
<thead>
<tr>
<th>Location or procedure</th>
<th>Mechanisms of unloading</th>
<th>Efficacy of venting (grade from ✓ to ⬤)</th>
<th>Cost & Complexity (grade from ✓ to ⬤)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricle</td>
<td>LV unloading (direct with catheter in the cardiac apex or through the mitral valve from the left atrium)</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Interatrial septostomy (septostomy usually with ballooning or stent)</td>
<td>Left-to-right atrial shunt</td>
<td>✓</td>
<td>⬤</td>
</tr>
<tr>
<td>Left atrium (transeptal or interatrial groove, or left atrial roof, or right superior pulmonary vein catheter or cannula attached to the ECMO venous return or to device like TandemHeart®)</td>
<td>Left atrial unloading (indirect LV and pulmonary venous unloading)</td>
<td>⬤</td>
<td>(✓✓✓✓✓ with device)</td>
</tr>
<tr>
<td>Trans-aortic (catheter or device like Impella®)</td>
<td>LV unloading</td>
<td>⬤</td>
<td>(✓✓✓✓✓ with device)</td>
</tr>
<tr>
<td>Pulmonary artery</td>
<td>Increased right-side blood drainage (indirect pulmonary venous and left cardiac chamber unloading)</td>
<td>✓</td>
<td>⬤</td>
</tr>
<tr>
<td>Systemic vein (femoral, jugular, subclavian) or right atrium</td>
<td>Increased right-side blood drainage (indirect pulmonary venous and left cardiac chamber unloading)</td>
<td>✓</td>
<td>⬤</td>
</tr>
<tr>
<td>IABP</td>
<td>Reduced LV afterload (enhanced systolic ejection) and reduced LV end-diastolic pressure (enhanced left atrial and pulmonary venous unloading)</td>
<td>✓</td>
<td>⬤</td>
</tr>
</tbody>
</table>

LV, left ventricular; ECMO, extracorporeal membrane oxygenation; IABP, intra-aortic balloon pump.
Figure 2 Location of LV Unloading. LV, Left Ventricle; LA, left atrium; IABP, Intra-Aortic Balloon Pump; PA, pulmonary artery.
Should We?
The Effect of Intraaortic Balloon Pumping Under Venoarterial Extracorporeal Membrane Oxygenation on Mortality of Cardiogenic Patients: An Analysis Using a Nationwide Inpatient Database

Shotaro Aso, MD, MPH¹; Hiroki Matsui, MPH¹; Kiyohide Fushimi, MD, PhD²; Hideo Yasunaga, MD, PhD¹
Figure 1. Patient selection. IABP = intraaortic balloon pumping, VA-ECMO = venoarterial extracorporeal membrane oxygenation.
Figure 2. Survival plots for patients applied to venoarterial extracorporeal membrane oxygenation with or without intraaortic balloon pumping. IABP = intraaortic balloon pumping, VA-ECMO = venoarterial extracorporeal membrane oxygenation.
Concomitant implantation of Impella® on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock

Federico Pappalardo¹†*, Christian Schulte²†, Marina Pieri¹, Benedikt Schrage², Rachele Contri³, Gerold Soeffker⁴, Teresa Greco¹, Rosalba Lembo¹, Kai Müllerleile²,
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total (n = 63)</th>
<th>ECMO + Impella (n = 21)</th>
<th>ECMO (n = 42)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital mortality, n (%)</td>
<td>41 (65)</td>
<td>10 (48)</td>
<td>31 (74)</td>
<td>0.04</td>
</tr>
<tr>
<td>Bridge to next therapy or recovery, n (%)</td>
<td>28 (44)</td>
<td>13 (62)</td>
<td>15 (36)</td>
<td>0.048</td>
</tr>
<tr>
<td>Weaning from MCS, n (%)</td>
<td>26 (41)</td>
<td>10 (48)</td>
<td>16 (28)</td>
<td>0.047</td>
</tr>
<tr>
<td>Bridge to recovery, n (%)</td>
<td>19 (30)</td>
<td>8 (38)</td>
<td>11 (26)</td>
<td>0.3</td>
</tr>
<tr>
<td>Bridge to VAD, n (%)</td>
<td>8 (13)</td>
<td>4 (19)</td>
<td>4 (9.5)</td>
<td>0.5</td>
</tr>
<tr>
<td>Bridge to cardiac transplantation, n (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Duration of ECMO, h</td>
<td>120 (36–234)</td>
<td>148 (72–239)</td>
<td>73.5 (29–217)</td>
<td>0.2</td>
</tr>
<tr>
<td>Duration of MV, h</td>
<td>93 (29–228)</td>
<td>163 (90–228)</td>
<td>48 (17–265)</td>
<td>0.04</td>
</tr>
<tr>
<td>CVVH, n (%)</td>
<td>18 (29)</td>
<td>10 (48)</td>
<td>8 (19)</td>
<td>0.02</td>
</tr>
<tr>
<td>Haemolysis, n (%)</td>
<td>30 (48)</td>
<td>16 (76)</td>
<td>14 (33)</td>
<td>0.004</td>
</tr>
<tr>
<td>Major bleeding, n (%)</td>
<td>20 (32)</td>
<td>8 (38)</td>
<td>12 (29)</td>
<td>0.6</td>
</tr>
<tr>
<td>Minor bleeding, n (%)</td>
<td>14 (22)</td>
<td>4 (19)</td>
<td>10 (24)</td>
<td>0.8</td>
</tr>
<tr>
<td>LVEF at weaning, %</td>
<td>45.5 (30–55)</td>
<td>52.5 (47–55.5)</td>
<td>37.5 (25–50)</td>
<td>0.13</td>
</tr>
</tbody>
</table>

CVVH, continuous veno-venous haemofiltration; MCS, mechanical circulatory support; MV, mechanical ventilation; VAD, ventricular assist device.
Unloading the LV on VA ECMO

• Is less more?

• If...
 • Lactate kinetics are favorable
 • Myocardial function stable or improving
 • End-organ perfusion OK

• Consider...
 • Turning down flows and accepting a lower MAP

• What about inotropes?
LA \rightarrow Ao

- **TandemHeart**
 - 21 Fr trans-septal inflow cannula
 - Centrifugal pump
 - Arterial outflow cannula (typically 15-19 Fr)

- Blood withdrawn directly from LA
LA \rightarrow Ao

- As we increase flow:
 - LV decompresses
 - LV EDP decreases
 - LV performance improves
LA \rightarrow Ao

- These relationships change as peripheral resistance and end-systolic elastance vary.
LV \rightarrow Ao

- Impella
 - Catheter mounted, impeller driven, axial flow pump
 - Driven across the aortic valve
 - Impella 2.5: 12 Fr
 - Impella CP: 14 Fr
 - Impella 5.0: 21 Fr
- Anchoring catheter
- Hemolysis is a common complication
LV \rightarrow Ao

- As flow increases...
 - Loss of isovoluemic periods
 - Pressure-volume loop changes shape
 - Progressive LV unloading (left-shifted loop)
 - Arterial and left ventricular pressures uncouple

D Burkhoff et al. J Am Coll Cardiol. 2015
LV \rightarrow Ao

• These relationships change as peripheral resistance and end-systolic elastance vary
Right-Sided Mechanical Circulatory Support
Generally Speaking...

Two common right-sided support configurations:

- Indirect RV bypass (RA \rightarrow Ao)
 - VA ECMO
- Direct RV bypass (RA \rightarrow PA)
 - Impella RP
 - TH Protek Duo
 - Assorted RVAD configurations
Device Flow (Q) = \frac{\text{RPMs}}{H} = \frac{\text{RPMs}}{\text{Pout} - \text{Pin}} \\
\text{(PA)} \quad \text{(RA)}

Pulmonary Hypertension
H = \text{PA (50/30)} - \text{RA (20)}

Acute RV Failure
H = \text{PA (30/20)} - \text{RA (20)}
Direct RV Bypass

Recognizing Biventricular Failure

Figure 7. Proposed algorithm for right ventricular (RV) acute mechanical circulatory support (AMCS) device use in RV failure. LV indicates left ventricular; PA, pulmonary artery; RVAD, right ventricular assist device; RVMI, right ventricular myocardial infarction; VA-ECMO, venoarterial extracorporeal membrane oxygenation; and VT/VF, ventricular tachycardia/ventricular fibrillation. *Unresponsive defined by new or persistent systolic blood pressure <90 mm Hg or cardiac index <2.2 requiring ≥1 inotrope or vasopressor worsening end-organ perfusion.
Recognizing Biventricular Failure

- **Right-sided support (RA → PA) with LV dysfunction**
 - LV volume overload
 - → LV pressure overload
 - Acute pulmonary edema
 - Worsened RV function

- **Left-sided support (LA/LV → Ao) with RV dysfunction**
 - Impaired LV preload
 - → LV suction
Veno-Venous ECMO
ECMO Biomaterial with absorbed proteins

Contact Activation
- C3
- C3a
- C3b
- C3bBb
- Anaphylatoxins

Complement Activation
- C5
- C5a
- C6, C7, C8, C9

Coagulation Cascade
- HMWK
- Bradykinin
- Contact Factors

Fibrinogen
- Thrombin
- Prothrombin

Platelet Degranulation
- IL-1β
- TNF-α

Neutrophil Activation
- Complement Products
- Thrombin and FXIIa

Platelet Activation
- Endothelial Activation
- Neutrophil Extravasation

Endothelium
- Integrins
- Pro-inflammatory cytokines
- P-selectin and other adhesion molecules

<table>
<thead>
<tr>
<th></th>
<th>VV ECMO</th>
<th>CPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Days to weeks</td>
<td>Minutes to hours</td>
</tr>
<tr>
<td>Anticoagulation</td>
<td>+/- low dose heparin</td>
<td>High-dose heparin</td>
</tr>
<tr>
<td>Reversal of anticoagulation</td>
<td>Rarely</td>
<td>Protamine</td>
</tr>
<tr>
<td>Hemodilution</td>
<td>Minimal</td>
<td>Deliberate</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Air-blood interface</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Pulsatility</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ischemia-reperfusion</td>
<td>Variable</td>
<td>Yes</td>
</tr>
</tbody>
</table>
VV ECMO and SIRS

• Contact system
 • Kallikrein and bradykinin mediated (immediate)

• Intrinsic/extrinsic coagulation
 • Prothrombin \rightarrow thrombin via FXa; mediated via biocompatible circuits

• Complement system
 • Immunomodulatory response leading to inflammation (delayed – hours)

• Endothelial cells
 • Inflammatory mediators lead to pro-inflammatory cytokine production and glycoxalyx injury

• Leukocytes
 • Neutrophils and monocytes are activated by extracorporeal circulation

• Platelets
 • Multiple proinflammatory interactions (delayed – days)
Management

• Important to differentiate SIRS from infection/sepsis
 • Prolonged vasogenic shock is not necessarily a marker of infection
 • Use procalcitonin to guide decisions

• Vasopressors to manage SIRS, not volume
 • Vasopressors also recruit unstressed venous volume and may help avoid the need for fluids

• Reduce concomitant causes of inflammation
 • Rest the lungs
 • Renal replacement therapy
 • Treat infection

• Future frontiers: the microcirculation
Thank You!

Questions?

csjabaley@emory.edu