Complications After Esophagectomy

Betty C. Tong, MD, MHS
Associate Professor of Surgery
Division of Thoracic and Cardiovascular Surgery
Clinical Director, Lung Cancer Screening Program
Duke University Medical Center
Disclosures

- Consultant (Physicians’ Advisory Board), Medtronic

- The content herein is based solely on literature and reports; I have no practical experience managing post-esophagectomy complications
Objectives

• Describe the most common complications following esophageal surgery

• Discuss the management of these complications
Complications After Esophagectomy

General/Systemic
- Pulmonary/pneumonia
- Atrial fibrillation
- Chylothorax
- RLN Injury/vocal fold paralysis

Conduit-Related
- Ischemia/necrosis
- Fistula
- Anastomotic leak
- Anastomotic stricture
- Delayed gastric emptying
- Diaphragmatic hernia
Pulmonary/Pneumonia

- Relatively common, up to 60% of patients
- Includes pneumonia, ARDS/acute lung injury (ALI), PE
- Rx for ARDS/ALI is supportive
- Best Rx for complications such as PE, pneumonia is to avoid them altogether
Prevention of Post-Op Pneumonia

• **Preop optimization/conditioning**
 – Poor nutrition leads to muscle wasting (including respiratory muscles!)
 – Smoking cessation
 – Pulmonary rehab/inspiratory muscle training
 – Minimizing irradiated lung volume

• **Perioperative**
 – Minimally invasive surgical approach
 – Protective ventilatory strategies
 – Avoid RLN injury
 – Goal-directed fluid therapy/avoid pulmonary edema
 – Early ambulation, aggressive pulmonary toilet
 – Evaluate for aspiration before feeding

Recurrent Nerve Injury/Vocal Fold Paralysis

- RLNs are subject to injury due to their course in the TE groove

- Injury occurs in ~2% of esophageal resection cases, leading to vocal fold paralysis (VFP)

- VFP is associated with pneumonia, higher likelihood of trach, longer LOS and higher hospital charges\(^1\)

- Assessment and intervention by OHNS and Speech/Language Pathology helps to ameliorate these complications\(^1,2\)

\(^1\)Tong BC, Crowson MC et al. *Laryngoscope*. Accepted for publication

\(^2\)Berry MF et al. *J Thorac Cardiovasc Surg* 2010; 140(6):1266
Survey of GTSC surgeons’ practice patterns regarding VTE prophylaxis for esophagectomy

- 77 respondents completed online survey
 - 58 affiliated with academic institutions
- Wide practice patterns among respondents

Suboptimal dosing
Atrial Fibrillation

- Incidence ~20% of patients following esophagectomy
- Usually occurs on POD 2-3
- Risk factor(s): age, ICU LOS\(^1\); HTN\(^2\); pulmonary complications, sepsis\(^3\)
- Associated with anastomotic leaks and pulmonary complications\(^2,3\)
- Conflicting data re operative approach and association with POAF

\(^1\)Stawicki SPA et al. *Gen Thorac Cardiovasc Surg* 2011; 59(6):399
\(^3\)Murthy SC et al. *J Thorac Cardiovasc Surg* 2003; 126:1162-7
POAF is Associated with Mortality

- Mortality ~18-23%¹
- Improved in “modern” era but still significant

1Murthy SC et al. *J Thorac Cardiovasc Surg* 2003; 126:1162-7
2Stawicki SPA et al. *Gen Thorac Cardiovasc Surg* 2011; 59(6):399

- 60-day survival lower for patients with POAF²
Chylothorax

• Etiology: injury to thoracic duct or tributaries during surgery
• Relatively uncommon (<8%) but associated with high mortality (up to 18%)
• Should be recognized early and managed aggressively
Diagnosis of Chylothorax

- High output drainage from chest tube while NPO
- Milky in character after initiation of enteral feeding
- Triglycerides > 110 ng/dl is diagnostic
Initial Management of Chylothorax

- NPO
- TPN vs. tube feeds with medium chain triglycerides
- Consider Octreotide 50-500 mcg SC TID (standard dose 200 mcg)
 - Inhibits gastric, pancreatic and intestinal secretions
 - No large, RCT data to support this; only retrospective studies and case reviews¹
- Continue conservative management for 1 week max; if fails then intervention is necessary

Chylothorax – Diagnostic Imaging*

*Thoracic duct embolization can sometimes be achieved in same setting
Surgical Management of the Thoracic Duct

- VATS preferred over open
- Instill cream via J tube during surgery to assist with visualization

- Thoracic duct dissection/ligation vs.
- “Mass ligation” of soft tissues between aorta and azygos
COMPLICATIONS INVOLVING THE (GASTRIC) CONDUIT
Conduit Issues

• Major problems
 – Necrosis
 – Fistula

• “Minor” problems
 – Anastomotic Leak
 – Anastomotic stricture
 – Gastric outlet obstruction
 – Diaphragmatic hernia
 – Dumping syndrome
 – Reflux

“Say ... what's a mountain goat doing way up here in a cloud bank?”
Risk Factors for Conduit Necrosis

- **Patient-related**
 - h/o radiation
 - Malnutrition → consider J-tube feeding pre-op

- **Technical issues**
 - Must preserve right gastroepiploic
 - Avoid excessive trauma to stomach
 - Appropriate width (4-5 cm)
 - Too narrow can compromise blood supply
 - Too wide can be redundant and become compressed in thoracic inlet
• An early event in post-operative course
 – Rarely presents after POD 7
• Fever, tachycardia, oliguria, hypotension → sequelae of severe sepsis & metabolic acidosis

• Management involves resuscitation and urgent return to OR
 – Examine conduit, debride necrotic tissue
 – Drain widely
 – Consider diversion for large defect and significant necrosis

• While rare, mortality approaches 90%, especially if not promptly recognized and managed

Meyerson S and Mehta CK. *J Thorac Dis* 2014; 6(S3):S364
Airway-Conduit Fistula

- Uncommon (< 0.5% incidence) but potentially lethal
- Presents fairly early in postop course

Risk factors:
- Neoadjuvant chemo/XRT
- Underlying airway injury (technical issues, intubation, ETT cuff)
- Anastomotic leak → local irritation/enzyme leak
- Irritation by gastric staple line
Airway Conduit Fistula Management

- Endoscopic techniques
 - Fibrin glue, clipping
 - Covered stent placement
- High recurrence rate, migration
• Surgical intervention requires individualized approach

• Principles of repair
 – Drainage and debridement of nonviable tissue
 – Primary repair of airway/conduit defects
 – Buttressing with vascularized tissue to prevent re-formation of fistula
 • Muscle, omentum, pericardial fat
Anastomotic Leak

• Incidence 5 – 40%
• Associated mortality 2-12%

• Considerations
 – Anastomotic technique (hand sewn vs. stapled)
 – Anastomosis location (neck vs. chest)
 – Type of conduit (stomach vs. colon vs. jejunum)
 – Location of conduit (orthotopic vs. heterotopic)
Predictors of Anastomotic Leak After Esophagectomy: An Analysis of The Society of Thoracic Surgeons General Thoracic Database

Edmund S. Kassis, MD, Andrzej S. Kosinski, PhD, Patrick Ross, Jr, MD, PhD, Katherine E. Koppes, PA-C, James M. Donahue, MD, and Vincent C. Daniel, MD

Division of Thoracic Surgery, The Ohio State University Medical Center, Columbus, Ohio; Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina; and Division of Thoracic Surgery, The University of Maryland Medical Center, Baltimore, Maryland

- STS Database Analysis, 2001 – 2011
- 7,595 esophagectomy cases

- Patient-related risk factors: CHF, HTN, Renal insufficiency, Cervical anastomosis
- Nearly all measured post-operative complications associated with anastomotic leak

Management of Anastomotic Leak

- Antibiotics

- Cervical
 - Drainage of neck wound with wet-to-dry dressing changes

- Intrathoracic
 - More likely to require intervention
 - Endoscopy + stent placement, chest tube drainage
 - Operative exploration
Anastomotic Stricture

- Occurs in 9-40% of patients
- Progressive dysphagia; can be lifestyle-limiting
- Etiology
 - Conduit ischemia (early presentation)
 - Anastomotic leak (early)
 - Recurrent disease (late)
- Symptoms
 - Dysphagia
 - Odynophagia
 - Aspiration
Anastomotic Stricture

- Diagnosis confirmed with barium swallow
- Management is upper endoscopy with dilatation
- Bx if concern for recurrent disease
• Occurs in up to 50% of patients post-esophagectomy

• Etiology
 – Vagotomy performed at time of esophagectomy
 – Compression of stomach/conduit

• Management is controversial
 – Prophylactic: pyloromyotomy, pyloroplasty at the time of resection
 • Can still result in GOO
 – Expectant: endoscopic pyloric dilatation
Acquired Diaphragmatic Hernia

• Can occur either early or late, with or without symptoms
• If symptomatic, must be managed surgically

• Management
 – Reduction of hernia, reapproximation of crura
 – Surgeon’s choice re suturing conduit to diaphragm, mesh prosthesis

Thank you