Sternal Wound Infections
Diagnosis, Prevention and Treatment

Jeffrey M. Pearl, M.D.
Visiting Professor and Interim Program Director
UC Davis PA Program
Cardiothoracic Surgeon

APACVS 37th Annual Meeting
April 5-8th, 2018
Sternal Wound Infection

Definition- SSWI vs DSWI

SSWI- Superficial Sternal Wound Infection
- Skin
- SC tissue
- Pectoralis Fascia

DSWI- Deep Sternal Wound Infection
- + culture of mediastinal tissue or fluid
- Evidence of mediastinitis
- Chest pain, sternal instability, fever
- Purulent drainage
Sternal Wound Infection

Diagnosis

- Positive Culture
- Dehiscence
- Fever
- Pain
- Erythema
- Purulent Drainage
- Instability (click)

Only about 33% are identified pre-discharge in many studies

- Staph Epi- for SWI
- Staph Aureus for DSWI/Mediastinitis
Incidence and Demographics

- 3008 Adults, 291 SSI (9.7%)
- Deep Sternal Wound infections 1.6% (47)
- Post-op Mediastinitis 1.7%
- Superficial Wound complications 6.4%

Preoperative Risk Factor for DSWI/Mediastinitis
- Obesity
- IDDM
- Tobacco
- PVD
- High NYHA class
Sternal Wound Infection

Incidence/Risks/Outcomes

CABGs n=9021

2002-2006

SWI= 0.47% total

DSWI= 0.22%

Mortality

9.1% (vs 1.1% without)

14%

Risks:

- Female
- Preop HTN
- DM
- Obesity
- Prolonged Vent Time
- Re-Exploration for bleeding

Age and Smoking were not a risk factor

Omran et al, Tehran heart Center BMC ID 2007:112
Table 1: Pre-intra-and postoperative characteristics among patients with and without SWI

<table>
<thead>
<tr>
<th>Variables</th>
<th>Group 1* (n = 9157)</th>
<th>Group 2** (n = 44)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean ± SD)</td>
<td>58.5 ± 9.7</td>
<td>60.1 ± 8.7</td>
<td>0.173</td>
</tr>
<tr>
<td>BMI (mean ± SD)</td>
<td>27 ± 4</td>
<td>28.3 ± 4</td>
<td>0.032</td>
</tr>
<tr>
<td>Female %</td>
<td>25.5</td>
<td>52.3</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Smoking %</td>
<td>39.5</td>
<td>34.1</td>
<td>0.467</td>
</tr>
<tr>
<td>Diabetes %</td>
<td>33.7</td>
<td>59.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Hypercholesterolemia %</td>
<td>61</td>
<td>65.9</td>
<td>0.508</td>
</tr>
<tr>
<td>Hypertension %</td>
<td>49.7</td>
<td>90.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>PVD %</td>
<td>1.8</td>
<td>2.8</td>
<td>0.666</td>
</tr>
<tr>
<td>Length of preoperative hospital stay (days) (mean ± SD)</td>
<td>8.2 ± 4.9</td>
<td>9.4 ± 6.1</td>
<td>0.098</td>
</tr>
<tr>
<td>CCS (Functional class) (mean ± SD)</td>
<td>2.1 ± 0.8</td>
<td>2.6 ± 0.7</td>
<td>< 0.001</td>
</tr>
<tr>
<td>LVEF (mean ± SD)</td>
<td>49.1 ± 10.2</td>
<td>50.7 ± 11.2</td>
<td>0.260</td>
</tr>
<tr>
<td>Graft number (mean ± SD)</td>
<td>3.6 ± 0.9</td>
<td>3.6 ± 1</td>
<td>0.928</td>
</tr>
<tr>
<td>Cross clamp time (minute) (mean ± SD)</td>
<td>42.4 ± 41.5</td>
<td>45 ± 16.4</td>
<td>0.686</td>
</tr>
<tr>
<td>Perfusion time (minute) (mean ± SD)</td>
<td>70.1 ± 26</td>
<td>75.2 ± 23.5</td>
<td>0.207</td>
</tr>
<tr>
<td>Re-exploration for bleeding</td>
<td>1%</td>
<td>13.6%</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Intubation time (hours) (mean ± SD)</td>
<td>8.9 ± 13.6</td>
<td>54.1 ± 172.1</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Body mass index, BMI; Peripheral vascular disease, PVD; Canadian Cardiovascular Society classification, CCS; left ventricular ejection fraction, LVEF
* Without sternal wound infection
** With sternal wound infection
<table>
<thead>
<tr>
<th>Variables</th>
<th>Odds ratio</th>
<th>95% CI*</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-exploration for bleeding</td>
<td>13.415</td>
<td>4.521–39.802</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>10.763</td>
<td>3.297–35.128</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Female</td>
<td>2.707</td>
<td>1.446–5.071</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

* Confidence Interval
Sternal Wound Infection

Prevention and Treatment

- Avoid retained blood - dry before closure
- Early extubation
- Early removal of urinary catheter/central line
- I+D of superficial infection with VAC if needed
- Early OP/Definitive Rx for DSWI
 - Debridement of all devitalized tissue/resection
 - Drainage of all infected spaces
 - Abx treatment
 - Closure of sternal space
 - Flaps or closure/Abx irrigation
Staph Aureus Colonization and Sternal Wound Infection

Screening for Staph with nasal swabs (PCR)
Class I Recommendation, Level of Evidence A

Intranasal Treatment
- MSSA >90% decolonization, but
- MRSA only 45-50% effective decolonization

Routine use of Mupirocin- Class I recommendation,
Level of Evidence A

How many of you practice this?
Staph Aureus Preoperative Nasal Colonization Treatment

- 2% Mupirocin for 5 days
 - 45% reduction in SSI if known colonization
 - No MRSA post-sternotomy mediastinitis seen.
- Isolates identical in preop and surgical site cultures in general
Staph Aureus Colonization and Sternal Wound Infection

• A known fact that colonization with Staph A. increases risk of Surgical Site Infection
• Techniques Proposed to Reduce this Risk
 • UD (Universal Decolonization of all Patients)
 • TD (Targeted Decolonization (if culture positive))
 • ND (None)

• Cost Savings:
 UD $426 on average, prevented 19 SSI
 TD $205 on average, prevented 10 SSI
• For 220,000 CABGs done:
 UD would save 102 Million
 TD would save 45 million

<table>
<thead>
<tr>
<th>N</th>
<th>2130 (CABG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWI</td>
<td>5.4% (114)</td>
</tr>
<tr>
<td>HgBA1C w SWI</td>
<td>54 +/- 17mmol/mol</td>
</tr>
<tr>
<td>HgBA1C s SWI</td>
<td>45 +/- 13mmol/mol</td>
</tr>
</tbody>
</table>

HgBA1C > 70mmol/mol (8.6%)
20.6% vs 4.6%

Circ J 2016, 81:36-43
Sternal Wound Infection

Glycemic Control
Results in reduction of SWI and DSWI rates

3065 adult patients, program instituted to simplify glycemic control during an 18 month period

SWI incidence↓ from 2.6% to 1.0% (60% reduction)

Goal Glucose: <110mg/dl for 3 days of control minimum

BG 110-219 mg/dl 2U/hr insulin infusion
BG 220-299 5 U push + 2U/hr
BG 300-400 15U push + 2U/hr

Hypoglycemia rate was only 0.004%

Cramer et al, Arch Surg 2008 Vol 143
Sternal Wound Infection

Glycemic Control

Simplify and Multidisciplinary Approach

The 1% incidence now is related to co-morbidities such as poorly controlled diabetes preoperatively.
Sternal Wound Infection

IMA and Diabetic Patients

126,235 Diabetic Patients

<table>
<thead>
<tr>
<th></th>
<th>LITA</th>
<th>1.6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>122,465</td>
<td>BITA</td>
<td>3.1%</td>
</tr>
<tr>
<td>3770</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk ratio BTA vs. LITA= 1.71

Skeletonized superior to pedicle
If BITA skeletonized the risk is equal to LITA

Sternal Wound Infection
Risks and Prophylaxis: Evidence

Preoperative Nutritional Status
Hypoalbunemia $< 3.0\text{gm/ml}$ is a risk factor
Class I/Level B

Preoperative Glycemic Control
HgB A1c $>7.5\%$, Glucose $<180-200\text{mg/dl}$
Class I/Level B

Smoking Cessation
Class I/Level B
Sternal Wound Infection

Risks and Prophylaxis: Evidence

Perioperative Antibiotics
Within 60 minutes, no longer than 48 hours
Cephalosporin (Vanco not indicated routinely)
Class I/Level A

Topical Antibiotics
To cut edges of sternum on opening and closing
Class I/Level B (Vanco slurry)

Bone Wax
Avoid Class III/Level B but often used still
Sternal Wound Infection

Intraoperative Risk Factor for DSWI/Mediastinitis
- Bilateral IMA (2.9 vs 3.9%)

Postoperative Risk Factor for DSWI/Mediastinitis
- Prolonged Ventilatory Support
- Air Leak (lung)

Preoperative Risk Factor for SWI
- Obesity
- Age > 75 years

Riddderstolpe et al., Europ Journal of CT Surgery 2001 (20:1168-1175)
Chlorhexidine bathing/shower
Class IIb/Level B

Figure 8 or Bands in high risk patients
Class IIb/Level B

Robicsek Weave if indicated
IIa/B
Sternal Wound Infection

Treatment Options

• Closed Suction
• Abx Catheter Irrigation
• VAC Dressing
• Omental Transposition
• Pectoralis Flaps- “turnover” or “rotation”
• Rectus Abdominus Flap
• Latissimus Dorsi Flap

Early wound exploration, debridement, and sternal fixation as first step to preserve sternum
Wound discharge with fever ± WCC

Intact sternum
- Drain the abscess, Antibiotics, Remove wires, VAC pump
 - Debride, Irrigate, Rewire, primary or delayed wound closure. If tissues under tension
 - Use pectoral flap

Sternal dehiscence
- Viable non infected sternum, low risk patient
 - Debride, Use a myocutaneous flap (one or two stage procedure)
- Necrotic infected sternum, multiple fractures, high risk patients
Sternal Wound Infection

Rigid Sternal Fixation
(mostly for prophylaxis)

May be used in mild infections, at time of debridement and closure

Contraindicated for treatment of SWI in following:

- Osteoporosis
- Active Infection
- Extreme obesity
- Signs of bone loss
Sternal Wound Infection

VAC - Vacuum Assisted Closure

Introduced in 1997
- Increased peri-sternal blood flow
- Reduces bacterial levels
- Enhances granulation tissue
- Stabilizes chest

VAC Failures:
- > 4cm depth of wound
- Bacteremia
- Exposed bone
- Sternal instability

VAC Risk:
- Bleeding
- Damage to underlying tissues such as heart
- Limit to <3 weeks

Barrier between heart and great vessels and VAC (NPWT)
VAC Therapy Improves Outcomes

22 Studies covering 2467 patients
Non-randomized, meta-analysis

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VAC</td>
<td>5.2%</td>
</tr>
<tr>
<td>No-VAC</td>
<td>14.4%</td>
</tr>
</tbody>
</table>
Sternal Wound Infection

Immediate versus Delayed One-Stage Treatment

N= 583 SWI

497 referred immediately for treatment
LOS= 4.7 days
Mortality= 1%

86 Delayed repairs
LOS= 18 days
Mortality= 4.7%

Take home point – Do Not Delay
Sternal Wound Infection

Early vs. Delayed Referral for One-Stage Debridement and Flaps

<table>
<thead>
<tr>
<th></th>
<th>Immediate</th>
<th>Delayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>N= 583</td>
<td>497</td>
<td>86</td>
</tr>
<tr>
<td>Mechanical vent</td>
<td>4.4% (4days)</td>
<td>46.5% (18.3days)</td>
</tr>
<tr>
<td>Tracheostomy</td>
<td>2.6%</td>
<td>36%</td>
</tr>
<tr>
<td>III/IV Decub</td>
<td>4.8%</td>
<td>23.2%</td>
</tr>
<tr>
<td>Major Dehiscence</td>
<td>0%</td>
<td>14%</td>
</tr>
<tr>
<td>LOS</td>
<td>4.7 days</td>
<td>19.3 days</td>
</tr>
<tr>
<td>Mortality</td>
<td>1%</td>
<td>4.7%</td>
</tr>
</tbody>
</table>

Cabbabe et al, Plast Reconstr Surg 2009 129;1490-4
Sternal Wound Infection

Flap Coverage - Advantages

- Decreased vent dependence
- Decreased need for tracheostomy
- Decreased decubitus
- Decreased LOS
- Decreased mortality

Cabbabe et al, Plast Reconstr Surg 2009, 123:1490-1494
Sternal Wound Infection

Debridement and Flap Reconstruction vs Traditional Debridement/Rewiring/Closed Drainage

<table>
<thead>
<tr>
<th></th>
<th>Major Comps</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flap Reconstruction</td>
<td>22%</td>
<td>0%</td>
</tr>
<tr>
<td>Traditional Approach</td>
<td>92%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Sternal Wound Infection

Muscle Flap Repair

13 year single Institution- 1994-2011

N=10404 patients

130 infections (1.25%) with 12 deaths

118 for Analysis 42% had muscle flaps- longer hospital stay, good outcome
60 day mortality= 12.3%

<table>
<thead>
<tr>
<th>Type</th>
<th>Blood supply</th>
<th>Limitations/adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle flaps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pectoralis turnover flap</td>
<td>IMA and intercostal perforators</td>
<td>Functional arm impairment</td>
</tr>
<tr>
<td>Rotation-advancement pectoralis flap</td>
<td>Thoracoacromial pedicle</td>
<td>Functional arm impairment</td>
</tr>
<tr>
<td>Segmental pectoralis flap</td>
<td>Intercostal blood supply</td>
<td>Functional arm impairment</td>
</tr>
<tr>
<td>Rectus abdominis myocutaneous (RAM) flap</td>
<td>Epigastric arteries</td>
<td>Abdominal wall herniation</td>
</tr>
<tr>
<td>External oblique muscle (EOM) flap</td>
<td>Branches of the intercostals arteries</td>
<td>Only for defects below the 4th costal interspace</td>
</tr>
<tr>
<td>Latissimus dorsi muscle (LDM) flap</td>
<td>Thoracodorsal artery and serratus artery branch</td>
<td>Functional arm impairment</td>
</tr>
<tr>
<td>Non-muscle flaps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omentum</td>
<td>Gastroepiploic artery</td>
<td>Hernia, reflux, dysphagia</td>
</tr>
<tr>
<td>Fasciocutaneous flaps</td>
<td>Superior epigastric vessels</td>
<td>Abdominal wall impairment</td>
</tr>
<tr>
<td>Split-thickness skin graft</td>
<td>None</td>
<td>Requires a well-vascularized bed</td>
</tr>
<tr>
<td>Rare options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteocutaneous flap</td>
<td>Bone related vessel</td>
<td>Functional (arm) impairment</td>
</tr>
<tr>
<td>Free flaps</td>
<td>Various</td>
<td>Cosmetic impairment</td>
</tr>
</tbody>
</table>
Table 4. Check list prevention of infection in cardiac surgery.

<table>
<thead>
<tr>
<th>Preoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening for Methicillin-resistant S. aureus</td>
</tr>
<tr>
<td>MRSA decolonization</td>
</tr>
<tr>
<td>Hair removal with clippers</td>
</tr>
<tr>
<td>Optimal blood glucose level adjustment</td>
</tr>
<tr>
<td>Dental consult (?)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intraoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timely application of antibiotics</td>
</tr>
<tr>
<td>Antibiotics adapted to preexisting infection</td>
</tr>
<tr>
<td>Adequate surgical hand disinfection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuing of decolonization</td>
</tr>
<tr>
<td>First dressing change with 24-48 hours</td>
</tr>
<tr>
<td>Regular blood glucose level adjustments</td>
</tr>
<tr>
<td>Termination of perioperative antibiotic prophylaxis at day 1</td>
</tr>
</tbody>
</table>

Note: *Joint mediastinitis register of the German Society for Thoracic and Cardiovascular Surgery (DGTHG), Institute for Quality and Patient Safety (BQS), National Reference Center for Surveillance of Nosocomial Infections (NRZ).*
Conclusions- Prevention:

Preoperative
Nutritional Status
Nasal Swab and/or Decolonization (Mupirocin)
DM control

Intraoperative
Perioperative ABx (48 hours), Vanco paste
Skeletonization of IMA
Dry closure

Post-operative
Glycemic control
Early extubation
Sternal Wound Infection

Conclusions - Diagnosis and Treatment:

- Early recognition
- Culture
- Antibiotics
- Re-exploration debridement, secure closure, ABx irrigation

Or

- VAC Dressing

- Immediate muscle flap Closure (pec or omental)
 - or Myocutaneous Flap