

Let's Be Objective: Using Objective Measures and Vital Signs in Acute PT

Combined Sections Meeting 2018
New Orleans, LA, February 21-24, 2018
Jonathan R Sutter PT, DPT, CCS
OSF Healthcare

Disclosures

- No relevant financial relationship exists for the content being presented today.

Learning Objectives

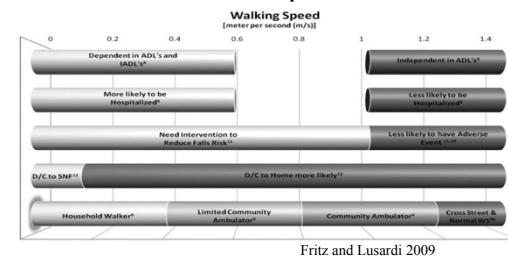
- Describe various rehabilitation objective measures used in acute care settings and their clinical usefulness
- Apply objective measures to clinical cases and synthesize test results
- Demonstrate knowledge of hemodynamic principles when mobilizing patients through interactive, case-based discussions
- Describe normal vs. abnormal hemodynamic responses to mobility and explain implications for rehabilitation

Course Outline

- Part 1
 - The case for objective measures
 - Objective measures useful in acute care
 - Case studies
- Part 2
 - Hemodynamic concepts
 - Relevance of Hemodynamics in acute care PT
 - Case studies

The Case for Objective Tests and Measures

- Objective Measures –
 - Establish a measureable baseline
 - Outcomes measurement to determine response to interventions
 - Meaningful goal setting (eg. reduction in fall risk, improved endurance, improved gait speed to safely access the community)


The Case (cont)

- Support discharge recommendations ("AMPAC is indicative of probable discharge to home")
- Provide a repeatable process to measure performance ("slow gait speed" vs. "patient ambulated .30 meters/sec")
- Some help predict rehabilitation prognosis (eg. ICUAW vs. deconditioning weakness)
- May allow for rehabilitation research

Gait Speed

- Psychometric Properties
- Valid and reliable as a measure of walking ability, and is strongly related to balance.^{1,2}
- Predictive of health outcomes, SNF placement, mortality, poor QOL, falls^{1,3}
- Meaningful change – in general, ~.10 m/s for older adults⁴

Gait Speed

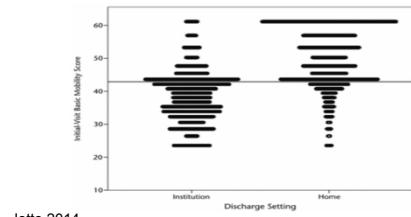
What About Acute Care?

- ³Peel et al - Meta-analysis older adults mean age ≥ 70 yrs; acute care CGS = .46 m/s, FGS = .75 m/s
- ⁵Braden et al – 66 ill elderly (acute care setting) with broad range of dx, majority using a wh walker at discharge, mean gait speed was .31 meters/sec at eval and .38 meters/sec at discharge (either 10 meter walk test or 3 meter walk test used depending on ability)

Implications of Gait Speed

- Gait speed change of .10 m/s considered substantial in patients with abnormal gait speed⁴
- < 0.4 m/s – household ambulation
- 0.4 – 0.8 – “limited” community ambulation
- >0.8 m/s – unlimited community ambulation⁶
- Patients in the Braden et al⁵ study that did return home walking < 0.4 m/s were only household ambulators who had caregiver assistance and few or no steps

AMPAC 6 Clicks


- Psychometric Properties
- Valid and reliable as a measure of basic mobility function in the acute care setting.^{8,9}
- Predictive of discharge setting after acute care (raw “cut-off” score of 17 or less predicts institutional discharge)⁷

How Its Done

Please check the box that reflects your (the patient's) best answer to each question.				
	Unable	A Lot	A Little	None
How much difficulty does the patient currently have . . .				
1. Turning over in bed (including adjusting bedclothes, sheets, and blankets)?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2. Sitting down on and standing up from a chair with arms (eg, wheelchair, bedside commode)?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3. Moving from lying on back to sitting on the side of the bed?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
How much help from another person does the patient currently need . . .				
4. Moving to and from a bed to a chair (including a wheelchair)?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
5. To walk in hospital room?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
6. Climbing 3-5 steps with a railing?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Jette 2014

Predicting Discharge Location

Jette 2014

Berg Balance Scale

- Psychometric Properties
- Valid and reliable as a measure of balance (most studied in elderly, stroke and other neurological conditions). Normative values in community elderly have been established (above 50 for all age ranges)¹⁰.
- Predictive of falls ("cut-off" score of 45 or less predicts risk of falls [90% specificity, but only 64% sensitivity])^{10,11}

Berg (cont)

- One study of 44 community-dwelling elderly combined Berg score with falls history - found that those who have more than 1 fall in the past 6 months and score ≤ 51 or who do not fall but score ≤ 42 , correctly categorized fallers (Sensitivity) 91% of the time, and non-fallers (Specificity) 82% of the time.¹²
- Meaningful change – MDC_{95} = between 3 and 7 points^{11,13}

Dynamic Gait Index (DGI)

- Psychometric Properties¹⁴:
 - Populations studied: older adults, CVA, PD, MS and vestibular deficits
 - Test-Retest reliability (ICC between .84 - .96) and inter-rater reliability are high
 - Concurrent validity moderate to high with TUG and 10 meter walk test
 - Sensitivity and specificity have been reported as 59% and 64%
 - Cut-off score for fallers vs. non-fallers varies by population, ranging from 19 to 23
 - MDC_{95} - 3 points (community elderly with falls or near falls)¹¹

4-item DGI

- Marchetti and Whitney¹⁵ proposed a 4 item DGI to improve time efficiency
 - 4 items selected – horizontal/vertical head turns, gait on level surfaces, changes in gait speed
 - Cut off to identify fallers was reported at 9 or less (out of 12 total points)^{15,16}
 - Psychometric properties – less studied than original DGI, reliability and validity established in outpatient stroke population with a proposed MDC of 3 points¹⁷

Functional Status Score ICU (FSS ICU)

- Psychometric properties:
- Validated against other established measures of strength and function in critical care¹⁹
- Responsiveness – established and correlates to muscle strength improvements¹⁹
- Reliable - .99 ICC²⁰
- MID estimated to be between 3-5 points¹⁹
- Predictive of discharge location when measured at time of ICU discharge ([median scores] 28 = home, 20 = IP Rehab, 9 = SNF)²⁰

FSS ICU

Therapeutic Activities:		
Activity	Functional Status Score in the Intensive Care Unit (FSS-ICU) Score	Scoring
Preambulation Categories		0 = unable to perform 1 = Total assistance
• Rolling	3	
• Supine to Sit Transfer	3	2 = Maximal assistance
• Unsupported sitting	5	3 = Moderate assistance
Ambulation categories		4 = Minimal assistance 5 = supervision
• Sit to stand transfer	3	
• Ambulation	0 (0 feet)	6 = Modified Independence
Cumulative FSS-ICU Score	14	7 = Complete Independence

MRC

- Psychometric properties –
 - Valid and reliable [ICC of .96 for inter-tester reliability²¹] in patients with central/peripheral nerve dysfunction and those with critical²²
 - Cut-off score of 48 (persists with serial measurement) identifies ICUAW²³
 - Cut-off of greater than or equal to 41.5 required to stand and complete the PFIT²²

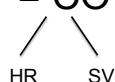
MRC Scale

Medical Research Council Scoring System¹³

Strength of Muscle Groups for the Following Motions:	Strength Grades
Shoulder abduction	5=normal muscle strength/power
Elbow flexion	4=active movement against gravity with resistance
Wrist extension	3=active movement against gravity
Hip flexion	2=active movement with gravity eliminated
Knee extension	1=flicker/trace muscle contraction
Ankle dorsiflexion	0=no active muscle contraction

Nordon-Craft 2012

Handheld Dynamometer


- What it can tell you – weak grip accompanies decreased muscle mass and physical function, weak grip predicts mortality and longer hospitalization.²⁴
- Correlates to MRC score to detect ICUAW²⁵
 - <11 kg for men, and <7 kg for women identifies ICUAW
 - These cut-off scores yielded 81% sensitivity and 83% specificity
- Valid and reliable (inter-rater and test-retest) as a measure of grip force²⁶

Hemodynamic Terms

- **Hemodynamics** is primarily about tissue perfusion (with oxygen)
- **Cardiac Output** – amount of blood pumped/min (Normal Value = 4 to 8 lpm at rest)
- **Heart Rate and Rhythm**
- **Stroke Volume (SV)**
- **Cardiac Output (CO)** - a function of HR and SV
- **Peripheral Vascular Resistance (PVR)**
- **Blood pressure (BP)** – a function of CO and PVR
- **Preload, Contractility and Afterload**²⁷

Formula That Changes Lives

$$BP = CO \times PVR$$

Factors Lowering HR

- Key point: the actual HR is less important than its impact on systemic perfusion

Heart Rhythm

- How would this heart rhythm affect hemodynamics?

Stroke Volume

- Amount of blood ejected from each ventricle with each heartbeat (normally 50 – 100 ml/beat)
- Ejection Fraction (normal is usually over 60%) = percentage of blood volume ejected from the ventricles with each heartbeat
- Preload - amount of stretch on the LV reflecting EDV
- Afterload - amount of resistance to ejection of blood from LV
- Contractility and venous return²⁷

Determinants of Preload

- Factors that increase preload:
- Factors that decrease preload:

Changing Position Impacts Hemodynamics

- How does a transfer to sitting (from supine) or standing (from sitting) affect preload?
- What should happen to BP when your patient transfers from supine to sitting? Sitting to standing?
- Why?

Physiology of the Reflex

- Baroreceptors are stretch receptors that send electrical impulses to the brain at a certain rate directly related to BP
- Increased or decreased BP results in changes to rate of baroreceptor signal firing
- Brainstem reacts with either a sympathetic (norepinephrine) or parasympathetic (increased vagal tone) effect on HR, contractility (SV), and vascular tone.
28,29

Gait Speed References

- ¹Fritz S, Lusardi M. White paper: "walking speed: the sixth vital sign". *J Geriatr Phys Ther.* 2009;32(2):46-9.
- ²Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. *Age Ageing.* 1997;26(1):15-9.
- ³Peel NM, Kuys SS, Klein K. Gait speed as a measure in geriatric assessment in clinical settings: a systematic review. *J Gerontol A Biol Sci Med Sci.* 2013;68(1):39-46.
- ⁴Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. *J Am Geriatr Soc.* 2006;54(5):743-9.
- ⁵Braden HJ, Ko M, Bohmfalk M, Hortick K, Hasson S. Gait speed improves during physical therapy in general acute care, skilled nursing, and inpatient rehab – a pilot study. *JACPT.* 2013; 4(1): 20-25.
- ⁶Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. *Stroke.* 1995;26:982-989.

AM-PAC 6 Clicks References

- ⁷Jette DU, Stilphen M, Ranganathan VK, Passek SD, Frost FS, Jette AM. AM-PAC "6-Clicks" functional assessment scores predict acute care hospital discharge destination. *Phys Ther.* 2014;94(9):1252-61.
- ⁸Jette DU, Stilphen M, Ranganathan VK, Passek SD, Frost FS, Jette AM. Validity of the AM-PAC "6-Clicks" inpatient daily activity and basic mobility short forms. *Phys Ther.* 2014;94(3): 379-91.
- ⁹Jette DU, Stilphen M, Ranganathan VK, Passek S, Frost FS, Jette AM. Interrater Reliability of AM-PAC "6-Clicks" Basic Mobility and Daily Activity Short Forms. *Phys Ther.* 2015;95(5):758-66.

Berg References

- ¹⁰Steffen TM, Hacker TA, Mollinger L. Age and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test and Gait Speeds. *Phys Ther.* 2002;82(2):128-137.
- ¹¹Romero S, Bishop MD, Velozo CA, Light K. Minimum detectable change of the Berg Balance Scale and Dynamic Gait Index in older persons at risk for falling. *J Geriatr Phys Ther.* 2011;34(3):131-7.
- ¹²Shumway-cook A, Baldwin M, Polissar NL, Gruber W. Predicting the probability for falls in community-dwelling older adults. *Phys Ther.* 1997;77(8):812-9.
- ¹³Downs S, Marquez J, Chiarelli P. The Berg Balance Scale has high intra- and inter-rater reliability but absolute reliability varies across the scale: a systematic review. *J Physiother.* 2013;59(2):93-9.

DGI References

- ¹⁴Shumway-cook A, Taylor CS, Matsuda PN, Studer MT, Whetten BK. Expanding the scoring system for the Dynamic Gait Index. *Phys Ther.* 2013;93(11):1493-506.
- ¹⁵Marchetti GF, Whitney SL. Construction and validation of the 4-item dynamic gait index. *Phys Ther.* 2006;86(12):1651-60.
- ¹⁶An S, Jee Y, Shin H, Lee G. Validity of the Original and Short Versions of the Dynamic Gait Index in Predicting Falls in Stroke Survivors. *Rehabil Nurs.* 2016.
- ¹⁷Lin JH, Hsu MJ, Hsu HW, Wu HC, Hsieh CL. Psychometric comparisons of 3 functional ambulation measures for patients with stroke. *Stroke.* 2010;41(9):2021-5.

FSS-ICU References

- ¹⁸Zanni JM, Korupolu R, Fan E, et al. Rehabilitation therapy and outcomes in acute respiratory failure: an observational pilot project. *J Crit Care.* 2010;25(2):254-62.
- ¹⁹Huang M, Chan KS, Zanni JM, et al. Functional Status Score for the ICU: An International Clinimetric Analysis of Validity, Responsiveness, and Minimal Important Difference. *Crit Care Med.* 2016.
- ²⁰Ragavan VK, Greenwood KC, Bibi K. The Functional Status Score for the Intensive Care Unit Scale: Is it reliable in the intensive care unit? Can it be used to determine discharge placement? *JACPT* 2016;7(3):93-100.

MRC References

- ²¹Kleyweg RP, Van der meché FG, Schmitz PI. Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barré syndrome. *Muscle Nerve.* 1991;14(11):1103-9.
- ²²Nordon-craft A, Moss M, Quan D, Schenkman M. Intensive care unit-acquired weakness: implications for physical therapist management. *Phys Ther.* 2012;92(12):1494-506.
- ²³Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. *N Engl J Med.* 2014;370(17):1626-35.

Dynamometry References

- ²⁴Bohannon RW. Muscle strength: clinical and prognostic value of hand-grip dynamometry. *Curr Opin Clin Nutr Metab Care.* 2015;18(5):465-70.
- ²⁵Ali NA, O'Brien JM, Hoffmann SP, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. *Am J Respir Crit Care Med.* 2008;178(3):261-8.
- ²⁶Mathiowitz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. *J Hand Surg Am.* 1984;9(2):222-6.

Hemodynamics References

- ²⁷AACN essentials of critical care nursing.3rd Edition, 2014, McGraw Hill Companies, Inc. Suzanne M Burns
- ²⁸Aminoff's general neurology; 5th edition; Postural hypotension and syncope. 2014;Elsevier Ch 8 PP147-168.
- ²⁹Cardiovascular and Pulmonary Physical Therapy; 4th Edition; Respiratory and Cardiovascular Drug Actions. 2006; Mosby Inc. Ch 45 PP792.
- ³⁰Guidelines for the diagnosis and management of syncope (version 2009),The Task Force for the Diagnosis and Management of Syncope of the European Society of Cardiology (ESC) *Eur. Heart J.* 2009 Nov; 30(21): 2631-2671.