Surgical simulation is an important adjunct for surgical education. Currently available models have significant shortcomings limiting their utility. We describe part of our experience with high-fidelity cadaveric models for critical procedures encountered during a surgical intern year.

Median times for CT placement were 265, 278, 162, 190, 162, and 164 seconds over the course of three laps.

Nine of the 24 placed CTs received a passing grade, with shallow placement being the most common reason for failure.

CT placement times improved from new-intern times to equivalence of a junior resident’s time by last repetition.

CT time at 2-months demonstrated no evidence of skill degradation; 138 vs a median of 164 seconds.

Median times for Foley placement were 128, 98, and 92 seconds. Premature inflation of the balloon was the most common reason for failure.

NGTs were inserted successfully in 50% of attempts.

Surveys demonstrated increased procedural confidence across all learners.

RESULTS

METHODS

- Four 4th-year procedure-naïve medical students.
- Placement of a left CT, nasogastric tube (NGT), right CT, and Foley catheter completed one lap.
- Each student completed three laps.
- Deceased whole-body male donor preserved with a non-formalin solution.
- CT placement times were measured from initiation of skin prep until securing the tube.
- One student repeated the lap two months later.
- Students were surveyed after completion.

DISCUSSION

- We demonstrate improved procedural speed and confidence by objective and subjective measures.
- Improvement seems to be sustained over time.
- High-fidelity cadavers can an efficient tool in rapidly accelerating learning curves and preparing learners for real-world patient care.