Learning Objectives

• Be able to discuss the purpose and types of disinfection

• Be able to discuss the basics of chlorination and chloramination
Topics to be Covered

• Why is disinfection needed?
• Types of disinfectants
• Chlorination basics
• Chloramination basics
• Unintended consequences of chloramination (nitrification)
Why do water systems disinfect?

- To kill pathogens in water (from source or distribution system contamination)
- Residuals prevent biofilm buildup in the distribution system
- Adds an additional barrier to protect the public from waterborne disease

Viruses

Bacteria (e.g. *E. coli*)

Protozoa

Developed by AWWA in partnership with RCAP and funded by USEPA, Published 2015
Why do we need multiple barriers?

- **Any barrier can fail**
- Not all microbes are easily filtered (viruses)
- Not all microbes are disinfected by chlorine (Crypto)
- The cumulative effect of multiple barriers greatly reduces the likelihood of pathogens reaching the consumer
What are the types of disinfection?

- Chlorine
- Chloramines
- Chlorine dioxide
- Ozone
- UV (Ultraviolet disinfection)

Which disinfectant(s) provide protection in the distribution system?
Chlorination

- Chlorine is the most common disinfectant used in the U.S.
- Common forms are:
 - **Chlorine Gas** (Elemental Chlorine)
 - $\text{Cl}_2(g) + \text{H}_2\text{O} \rightarrow \text{HCl} + \text{HOCl} + \text{Cl}^-$
 - $\text{HOCl} \leftrightarrow \text{H}^+ + \text{OCl}^-$
 - **Bleach** (NaOCl) (Sodium Hypochlorite)
 - **Chlorine Powder** Ca(OCl)$_2$ (High Test Hypochlorite (HTH), (Calcium Hypochlorite)
Impacts of pH on Chlorine Disinfection

- pH impacts the form of Chlorine
- Chlorine is most effective between pH 5.5 – 7.5

water H_2O

hypochlorous acid HOCl

pH dependent

Developed by AWWA in partnership with RCAP and funded by USEPA, Published 2015
Chlorination

Typical surface water chlorination

Pre-chlorination

Pre-Sedimentation Flocculation & Sedimentation

Primary Chlorination

Filtration

Clear well

Secondary Chlorination

Booster Chlorination

Developed by AWWA in partnership with RCAP and funded by USEPA, Published 2015
Chloramination (Combined Chlorine)

- React free chlorine with ammonia to form chloramines, a weaker disinfectant
 - $\text{HOCl} + \text{NH}_3 \rightarrow \text{NH}_2\text{Cl} + \text{H}_2\text{O}$ (monochloramine) GOOD
 - $\text{NH}_2\text{Cl} + \text{HOCl} \rightarrow \text{NHCl}_2 + \text{H}_2\text{O}$ (dichloramine)
 - $\text{NHCl}_2 + \text{HOCl} \rightarrow \text{NCl}_3 + \text{H}_2\text{O}$ (trichloramine) BAD

- Typically, monochloramine is the dominant species and is best disinfectant

Developed by AWWA in partnership with RCAP and funded by USEPA, Published 2015
Chloramination

Typical surface water chlorination

Pre-chlorination

Pre-Sedimentation Flocculation & Sedimentation

Filtration

Primary Chlorination

Secondary Chlorination

ammonia

Clear well

Booster Chlorination

Free chlorine CT
Chloramination

Typical surface water chlorination

Pre-chlorination

Primary Chlorination

ammonia

Secondary Chlorination

Booster Chlorination

Pre-Sedimentation Flocculation & Sedimentation Filtration Clear well

Free chlorine CT if no pre-chlorine
Chloramination

Typical surface water chlorination

- Pre-chlorination
- Flocculation & Sedimentation
- Filtration
- Clear well
- Secondary Chlorination
- Booster Chlorination

ammonia
Chlorination

Typical groundwater chlorination

Groundwater Well

Primary Chlorination

Secondary Chlorination

Booster Chlorination

Storage Tank

Distribution System

Developed by AWWA in partnership with RCAP and funded by USEPA, Published 2015
Chlorination with no free chlorine

Typical groundwater chlorination

Groundwater Well → Primary Chlorination → Storage Tank → Distribution System

- ammonia/phosphate addition
Booster Disinfection

- Chlorine decays in the distribution system

- Dosing chlorine in the distribution system (booster chlorination) maybe be required to maintain an acceptable chlorine residual

- Booster chlorination may pick up any free ammonia to produce chloramine

- Booster chloramination may be undertaken
What are the different types of chlorine?

- **Free chlorine** – residual comprised of hypochlorous acid and hypochlorite ion
 - HOCl and OCl-
- **Combined chlorine** – chlorine combined with other water quality constituents
 - Chloramines

- **Total chlorine** – sum of free and combined chlorine

\[\text{Free Chlorine} + \text{Combined Chlorine} = \text{Total Chlorine} \]
Chloramines

• Produce very little TTHM and HAA5
 – Many utilities have switched to chloramination to comply with the Stage 2 DBPR

• Ammonia may cause biological growth or nitrification in the distribution system
Interaction between Chlorine and other Water Components

Zone A: Chlorine is consumed by "instantaneous" chlorine demand

Zone B: "Instantaneous" chlorine demand satisfied. Primarily stable monochloramine

Typical Cl$_2$NH$_3$ 5:1 by mass (1:1 mole ratio)

Zone C: Mixture of mono and dichloramine Unstable combined chlorine.

Breakpoint

Chlorine Residual

Chlorine Added
Chlorination Dose

• How to ensure the right dosage is applied?
 – Measure Cl₂ residual in the distribution system
 – Make sure metering pump is working properly
 – Check Cl₂ stock strength regularly

Hypochlorite injector clogged with calcium
Activity (Chlorine Dose Calculation)

• **What is the initial Cl₂ dose if:**
 - Stock chlorine solution is 10%
 - Flow rate is 200 gpm

 — 10% NaOCl = 100,000 ppm = 100,000 mg/L

• **Chlorine feed rate:** 1.2 gph x 100,000 mg/L

\[
\frac{(1.2 \text{ gph} \times 3.78 \text{ L/gal}) \times 100,000 \text{ mg/min}}{60 \text{ min/h}} = 7560 \text{ mg/min}
\]

• **Chlorine concentration:** Chlorine feed rate / flow

\[
\frac{7560 \text{ mg/min}}{200 \text{ gpm} \times 3.78 \text{ L/gal}} = \frac{7560 \text{ mg} \times \text{min} \times \text{gal}}{200 \text{ gal} \times \text{min} \times 3.78 \times \text{L}} = 10 \text{ mg/L}
\]
Disinfection Monitoring – Point of Entry

Point of Entry

Groundwater Well → Storage Tank → Distribution System
Monitoring Chlorine Concentration – Point of Entry

• Residual disinfectant concentration cannot be less than 0.2 mg/L entering the distribution system for more than 4 hours

• Larger systems must be monitored continuously
 – Lowest value must be recorded each day

• If the continuous monitoring equipment fails:
 – Grab sampling every 4 hours, but for no more than 5 working days
Nitrification

Nitrifying bacteria feed on ammonia…
producing Nitrites…
which exert a chlorine demand…
which decreases the residual…
which allows microbes to flourish…
to produce more nitrites…
which continues the spiral…
until your residual is gone!

aka … “feeding the beast”
Nitrification rates affected by:

- pH
- Temperature
- Dissolved oxygen concentration
- Free ammonia
- Water age
Controlling Nitrification

• Keep the residual high during summer (4 mg/L not uncommon)

• Tank cycling (routine and deep…but can lead to feeding the beast)

• Targeted DS Flushing
 − At dead ends
 − Throughout DS (unidirectional)
 − At points of low chlorine
 − Associated with tank cycling

• Chlorite addition (chlorite is regulated)
Can nitrification be experienced in free chlorine systems?

• Some free ammonia may exist in natural waters

• What is your reaction when you get a complaint on a strong chlorine taste and odor?

• Trichloramines have the strongest chlorine odor and you actually need to increase the chlorine dose to achieve breakpoint/eliminate “chlorine” odor
Questions

- Does your system apply free chlorine only?
- Where is it applied?
- What is applied dose?
- What is measured residual at POE?
- What is measured residual in the distribution system?
- Does your system booster chlorinate?