Thermal Hydrolysis Process - Pretreatment for Anaerobic Digestion, Overview and Current Status

Gary Newman, Vice President - Brown and Caldwell
Co-authors: Perry Schafer, Tom Chapman – Brown and Caldwell

January 29, 2019, Tempe, AZ
Objectives of today’s presentation:

• Provide overview of Thermal Hydrolysis Process (THP)
 • How does it work
 • Benefits to digestion

• Describe process, considerations

• Implementation strategies

• Status of technology implementation

• Review recent performance

THP tanks and digesters at DC Water, Blue Plains WWTP
What is thermal hydrolysis?
Definition: Pretreatment of solids to enhance hydrolysis step in anaerobic digestion

Rate limiting step for sludge digestion
Where does THP fit in the solids treatment train? Class A configuration:
Class B process configuration:
Cambi™ THP – Batch process operated with continuous flow

Foul Gas Processing, Then to Digesters

Recycled Steam

Flash Line

Dilution Water

Hydrolyzed sludge to digestion (8-12%)

Steam ~150-175 psi

Raw Solids (15-18%)

Variable Level

PULPER TANK (Pre-heat)

REACTOR STEPS
1. Reactor Fill Cycle
2. Add Steam to Reach 90 psi
3. Batch Hold Time (Class A)
4. Flash (steam explosion) to Flash Tank

Brown and Caldwell, AZ Water Biosolids Technical Workshop
Cambi™ THP – Batch process operated with continuous flow, continued
How does THP improve digestion?

- Reduces digester size = cost and footprint savings:
 - Digester feed ~ 10% TS, compared to conventional ~ 5% TS
 - Allows for digestion at higher total solids concentrations
 - Quickly break down (hydrolyzes) solids into more digestible components
 - Stable digestion at 10 – 12 days HRT

- Produces a Class A product under specific circumstances

- Digested solids highly dewaterable – 30+% TS

- Improves visual, aesthetic appeal of dewatered, digested product
THP Process Considerations – What’s required to make this work?
Key processes to optimize THP

- Raw sludge screening
- Solids pre-dewatering ahead of THP
- Continuous and reliable steam production
- Post dilution of hydrolyzed solids
- Post THP cooling
- Foul gas management
- Final dewatering dilution
Raw sludge screening removes debris; protects THP auto valves, avoids plugging
Pre-dewatering delivers consistent feed to THP

- Output target: typically 16 – 17% TS
- Centrifuges typically used; BFPs also used
- Typical operation: Over-dewater, then “trim” TS with plant water or raw solids (thin sludge)
Continuous, reliable steam supply required for solids treatment with THP

- Frequent metric ~ 1 lb of steam required per lb of dry solids throughput (at 16 - 17 % solids feed)
- Newer systems may achieve less than 1.0 due to greater energy recycling.
- Supply steam at 175 psig
- Reactors set-point – 90 psig
Steam Production: Co-generation of steam and power

CHP at Crawly Plant, UK

Solar 50 turbines (3) at DC Water
Steam production: Boilers

• As cogen back-up
• As primary source of steam

• Consideration: Some jurisdictions require certified boiler operators for steam boilers
Post-THP dilution serves two functions

- Lower temperature to be compatible with pumping equipment
- Lower solids concentration to manage digester ammonia concentration (9 – 10%TS)
- Dilution water must be pathogen free
 - Disinfected plant water (effluent)
 - Potable water
Post-THP cooling to mesophilic temperature

- Tube-in-tube HEXs preferred
- Recirculate digesting solids (DS):
 - Mix with Thermally hydrolyzed solids (THS)
 - 3:1 DS to THS ratio
- Turbulent velocity through sludge tubes is critical
Foul gas from THP reactors must be managed

- Small leakage from reactors, pipes, pumps is expected
- Odor potential is very high
- Management through –
 - Containment and collection
 - Condense
 - Pump to digesters
Final dewatering produces desirable biosolids product
Final dewatering - considerations

- Belt filter presses (BFPs) most common; centrifuges also used
- Relatively high concentration of DS to dewatering (5 - 6% TS) –
 - Impacts polymer mixing and flocculation
 - Dilution of BFP feed improves polymer effectiveness
 - Dilution water may be filtrate or other pathogen free source
- Belt wash water must be pathogen free
- Filtrate high in ammonia content –
 - Collect separately from wash water
 - Send to recycle treatment where effluent nitrogen limits apply
How do I get one of these?

- Status of the technology
- Who are the vendors?
- THP projects in North America
- Procurement methods

Cambi Thermal Hydrolysis Facilities at Cardiff, UK
As of 2017, 6900 dry tons/day THP capacity in some phase of implementation
Vendors offering thermal hydrolysis processes

• Cambi:
 • by far the most installations operating and/or in design/construction
 • Wide range of capacities and feedstock

• Veolia
 • Exelys – continuous flow; Not yet certified as a Class A process
 • Biothelys – batch

• Others with few and/or small installations; none in North America
Cambi systems represent 85–90% of installed THP systems worldwide

- Norwegian firm
- Independent; not a subsidiary
- THP developed through application of science and lessons learned
- BC’s experience with Cambi – collaborative, but . . .
- Mark II is standardized product line
Cambi Mark II, B6 system

• Uses 6 cubic meter reactors
• B6-3 (70 dtpd capacity)
• B6-4 (93 dtpd capacity)
• Modular construction – built at Cambi’s fabrication facility in UK
Thermal hydrolysis status in North America

<table>
<thead>
<tr>
<th>Agency / Owner</th>
<th>Year THP Selected</th>
<th>Cambi System (# of trains)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Water, Washington, D.C.</td>
<td>2009</td>
<td>B12 mark I (4)</td>
<td>In operation since 2014</td>
</tr>
<tr>
<td>Hampton Roads Sanitation District, Atlantic Treatment Plan</td>
<td>2013</td>
<td>B6 Mark II (1)</td>
<td>In construction</td>
</tr>
<tr>
<td>City of Franklin, Tennessee</td>
<td>2015</td>
<td>B2 Mark II (1)</td>
<td>In construction</td>
</tr>
<tr>
<td>Trinity River Authority, Central Plant, Texas</td>
<td>2015</td>
<td>B6 Mark II (3)</td>
<td>In construction</td>
</tr>
<tr>
<td>San Francisco Public Utilities Commission (SFPUC), Southeast WWTP</td>
<td>2018</td>
<td>B6 Mark II (3)</td>
<td>In design</td>
</tr>
<tr>
<td>City of Calgary, Alberta</td>
<td>2016</td>
<td>B6 Mark II (2)</td>
<td>WAS only; in design</td>
</tr>
<tr>
<td>Washington Suburban Sanitary Commission (WSSC), Maryland</td>
<td>2016</td>
<td>B6 Mark (1)</td>
<td>In progress as part of progressive design build</td>
</tr>
<tr>
<td>City of Raleigh, North Carolina</td>
<td>2017</td>
<td>B6 Mark (1)</td>
<td>In design</td>
</tr>
<tr>
<td>Medina, Ohio</td>
<td>2017</td>
<td>B2 Mark II (1)</td>
<td>In start-up</td>
</tr>
<tr>
<td>Oakland County, Michigan</td>
<td>2017</td>
<td>B2 Mark II (1)</td>
<td>In construction</td>
</tr>
<tr>
<td>City of Winnipeg, Manitoba</td>
<td>2017</td>
<td>B6 Mark II</td>
<td></td>
</tr>
</tbody>
</table>
Thermal hydrolysis status in North America

<table>
<thead>
<tr>
<th>Agency/Owner</th>
<th>Year THP selected</th>
<th>THP Selection Process</th>
<th>Cambi System (number of trains)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Water, Washington, D.C.</td>
<td>2009</td>
<td>Sole source</td>
<td>B12 Mark I (4)</td>
<td>In operation since 2014</td>
</tr>
<tr>
<td>Hampton Roads Sanitation District, Atlantic Treatment Plant</td>
<td>2013</td>
<td>Sole source</td>
<td>B6 Mark II (1)</td>
<td>In construction</td>
</tr>
<tr>
<td>City of Franklin, Tennessee</td>
<td>2015</td>
<td>Pre-selection competition</td>
<td>B2 Mark II (1)</td>
<td>In construction</td>
</tr>
<tr>
<td>Trinity River Authority, Central Plant, Texas</td>
<td>2015</td>
<td>Pre-selection competition</td>
<td>B6 Mark II (3)</td>
<td>In construction</td>
</tr>
<tr>
<td>San Francisco Public Utilities Commission (SFPUC), Southeast WWTP</td>
<td>2018</td>
<td>Sole source, in progress</td>
<td>B6 Mark II (3)</td>
<td>In design</td>
</tr>
<tr>
<td>City of Calgary, Alberta</td>
<td>2016</td>
<td>Pre-selection competition</td>
<td>B6 Mark II (2)</td>
<td>WAS only; in design</td>
</tr>
<tr>
<td>Washington Suburban Sanitary Commission (WSSC), Maryland</td>
<td>2016</td>
<td>Sole source</td>
<td>B6 Mark II (1)</td>
<td>In progress as part of progressive design build</td>
</tr>
<tr>
<td>City of Raleigh, North Carolina</td>
<td>2017</td>
<td>Sole source</td>
<td>B6 Mark II (1)</td>
<td>In design</td>
</tr>
<tr>
<td>Medina, Ohio</td>
<td>2017</td>
<td>Sole source via ESCO</td>
<td>B2 Mark II (1)</td>
<td>In start-up</td>
</tr>
<tr>
<td>Oakland County, Michigan</td>
<td>2017</td>
<td>Sole source</td>
<td>B2 Mark II (1)</td>
<td>In construction</td>
</tr>
<tr>
<td>City of Winnipeg, Manitoba</td>
<td>2017</td>
<td>Competitive procurement</td>
<td>B6 Mark II</td>
<td>In design</td>
</tr>
</tbody>
</table>
DC Water Performance

• 4 years continuous, full-scale operation
• Average 65% VSR
• Average 300 – 330 dtpd throughput

10MW power production
DC Water Performance, continued

- Approximately 60% reduction in biosolids truck traffic
- Eliminated lime usage/delivery
- DC Water marketing biosolids product as Bloom™

Biosolids Facilities, DC Water
Procurement of THP technology

• THP is a process, not an equipment item
• If desired, sole source procurement can be justified on experience, installed systems, capacity
• Limited opportunity to customize:
 • Capacities vary as step function with number of reactor vessels
 • Can accommodate Owner standards for controls, electrical, and some mechanical components
• Vendor scope of supply may be tailored to needs of project
Summary

- Thermal hydrolysis is an established process for pre-treatment solids to enhance anaerobic digestion
- Significant digestion benefits achieved through THP:
 - Greater VSR and digester gas production via smaller digesters
 - Class A digested solids via appropriate process configuration
- Improved cake product:
 - Higher cake solids
 - Low cake odor
 - Debris free
- Support systems for THP are significant
- Cambi has by far the most THP installations
- Growing list of applications in North America
Questions?

Gary Newman - Brown and Caldwell (gnewman@brwncald.com)
Co-authors: Perry Schafer, Tom Chapman – Brown and Caldwell

January 29, 2019, Tempe, AZ
Belt presses produce high quality product
How does it work? Combination of temperature and pressure (Cambi™)

1. Solids are dewatered to ~17%, then sent to Pulper

2. Solids mixed with return steam and Water

3. Solids are heated by direct steam addition to 320°F and 90 psi for 30 minutes

4. Pressure in reactor is reduced to 60 psi.
 - Steam is returned to Pulper

5. Reactor pressure is rapidly released, flashing solids to the flash tank.

To Cooling and anaerobic digestion

Brown and Caldwell, AZ Water Biosolids Technical Workshop
Source of supplemental digester heat is required

• During Start-up, while THS feed is low (ramping up) and digester shell losses are constant

• During periods when THS feed is suspended (process reasons, maintenance/repair, etc.)

• Steam injection provides supplemental heat:
 • Inject into recirculating digested solids loop
 • Special steam injector is required